МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Радиационный режим в атмосфере

    Радиационный режим в атмосфере

    Излучение в атмосфере

    Реферат

     

    Радиационный режим в атмосфере

     

             Составлен:

    Карбышевым С.Ф.

    Введение


              Большинство  происходящих в атмосфере явлений, изучаемых оптиками и метеорологами, развиваются за счет  лучистой энергии, т.е. энергии, доставляемой Земле солнечной радиацией. Мощность этой энергии примерно может быть оценена в 18*1023 эрг/с. Энергетический спектр солнечной радиации на границе атмосферы близок к спектру абсолютно черного тела с температурой порядка 60000К (рис.1.[1]).

    До того, как солнечное излучение достигнет  поверхности, оно проделает длинный путь через

    земную атмосферу, где будет не только рассеяно и ослаблено, но и изменено по спектральному

    Рис.1. Распределение энергии в спектре солнечной радиации на границе атмосферы: 1- по данным 1903-1910 гг., 2 - 1920-1922 гг., 3 - 1917 г., 4 - абсолютно черное тело при температуре 57130К.

     

    составу. В результате дошедшая до места наблюдения (земной поверхности) в виде параллельных лучей от Солнца так называемая прямая солнечная радиация будет как количественно, так и качественно отлична от солнечной радиации за пределами атмосферы [1].

        Солнечная (коротковолновая) радиация преобразуется, проходя через атмосферу, в следующие виды радиации: рассеянную (ввиду наличия в атмосфере различных ионов и молекул газов, частиц пыли происходит рассеяние прямой солнечной энергии во все стороны; часть рассеянной энергии доходит до поверхности Земли), отраженную (часть попавшей в атмосферу и на земную поверхность энергии отражается обратно), поглощенную (происходит диссоциация и ионизация молекул верхних слоях атмосферы, нагрев воздуха и самой земной поверхности, тех предметов, которые на ней находятся).


    Спектр Солнца

     

        Как видно из рис.1., энергетический спектр излучения близок к спектру абсолютно черного тела при температуре T~60000К, но не совпадает с ним, т.к. яркость солнечного диска планомерно уменьшается от его центра к краям. Наилучшей формой представления распределения энергии в солнечном спектре является формула В.Г. Кастрова:


    l0,l*Dl=0,021*l-23*exp(-0,0327*l-4)*Dl[1] (1).

     

        Формулы, описывающей распределение энергии Солнца на поверхности Земли пока не существует, т.к. в нее должно входить слишком много флуктуирующих параметров (плотность и высотное распределение газов, альбедо отражающих поверхностей, температура и т.п.).


    Ослабление потоков лучистой энергии в атмосфере

         Солнечное излучение, проходя через атмосферу, ослабляется благодаря эффектам рассеяния и поглощения. Для потоков лучистой энергии атмосфера в видимой части спектра является мутной средой, т.е. рассеивающей, а в ультрафиолетовой и инфракрасной - поглощающей и рассеивающей. Световой поток поглощается в атмосфере, причем количество энергии, дошедшей до поверхности Земли, можно найти из закона Бугера (закон ослабления света):


    I=I0*exp(-)[3] (2),

    где I0 - интенсивность падающего излучения (на границе атмосферы), Z0£750  (плоско-параллельная модель атмосферы), H - путь, пройденный светом до земной поверхности, k(h)- коэффициент поглощения (ослабления) светового потока, зависящий от высотного распределения плотности, состава атмосферы, физических и химических свойств газов, частиц, находящихся в атмосфере (рис.2.[1]).

        Рассмотрим избирательное поглощение лучистой энергии в атмосфере. Любое вещество имеет свои полосы поглощения (рис.3.[1]). Из газов, входящих всегда в состав атмосферы, существенным для нас селективным поглощением обладают лишь O2, O3, CO2 и водяной пар H2O. Кислород вызывает интенсивное поглощение света

    В далекой ультрафиолетовой области для длин волн l<200 нм, с максимумом поглощения около l=155нм. Поглощение в этой области спектра настолько велико уже в самых высоких слоях



     

    Рис.2. Распределение энергии в нормальном солнечном спектре.




    Рис.3. Спектр поглощения земной атмосферы.


    атмосферы, что солнечные лучи с длиной волны l<200нм не доходят до высот, доступных для наблюдения с поверхности Земли и самолетов. Кислород также дает систему полос в видимой области спектра: A (759,4- 70,3 нм; lmax=759,6 нм); B (686,8 - 694,6 нм; lmax=686,9 нм). Углекислый газ (CO2) - основная узкая полоса с lmax=4,3 мкм, остальные - слишком незначительны, поэтому не имеют для нас существенного значения. Озон (O3) имеет весьма сложный спектр поглощения, линии и полосы которого охватывают всю область солнечного спектра, начиная от крайних ультрафиолетовых лучей и до далекой инфракрасной области[1]. В земной атмосфере озона мало, он располагается в виде слоя (10 - 40 км) с центром тяжести на высоте около 22 км, но обладает сильной поглощательной способностью. Его полосы: п.Гартлея (200 - 320 нм; lmax=255 нм); п.Шапюи (500 - 650 нм; lmax=600 нм). Наибольшее значение в поглощении лучистой энергии в атмосфере имеет водяной пар (H2O), которого очень много в нашей атмосфере (влажность, облака и т.п.), его полосы поглощения: rst (0,926 - 0,978 мкм; lmax=0,935 мкм); F (1,095 - 1,165 мкм; lmax=1,130 мкм); Y (1,319 - 1,498 мкм; lmax=1.395); W (1,762 - 1.977 мкм; lmax=1.870 мкм); C (2,520 - 2,845 мкм; lmax=2,680 мкм). Наиболее точная формула для расчета величины поглощенной в атмосфере энергии солнечной радиации имеет вид:

    DE=0,156*(m*v)0,294 кал/см2* мин.[2] (3),

    где m - пройденный лучами путь, v - общее содержание водяного пара в вертикальном столбе атмосферы единичного сечения (1 см2). Далее рассмотрим атмосферные аэрозоли и пыль, их содержание зависит от высоты, они влияют на уменьшение прозрачности атмосферы.

        Рассмотрим отраженную радиацию, т.е. радиацию, которая достигает земной поверхности, частично отражается от нее и вновь возвращается в атмосферу. Также отраженная радиация - это и излучение, отраженное от облаков.

        Количество отраженной некоторой поверхностью энергии в сильной мере зависит от свойств и состояния этой поверхности, длины волны падающих лучей. Можно оценить отражательную способность любой поверхности, зная величину ее альбедо, под которым понимается отношение величины всего потока, отраженного данной поверхностью по всем направлениям, к потоку лучистой энергии, падающему на эту поверхность; обычно его выражают в процентах (ТАБЛИЦА 1[1]).

    ТАБЛИЦА 1

    ВИД  ПОВЕРХНОСТИ

    АЛЬБЕДО

    СУХОЙ  ЧЕРНОЗЕМ

    14

    ГУМУС

    26

    ПОВЕРХНОСТЬ   ПЕСЧАНОЙ   ПУСТЫНИ

    28 -38

    ПАРОВОЕ   ПОЛЕ  ( СУХОЕ)

    8 - 12

    ВЛАЖНОЕ   ВСПАХАННОЕ    ПОЛЕ

    14

    СВЕЖААЯ  ( ЗЕЛЕНАЯ  )  ТРАВА

    26

    СУХАЯ  ТРАВА

    19

    РОЖЬ  И  ПШЕНИЕЦА

    10 - 25

    ХВОЙНЫЙ   ЛЕС

    10 - 12

    ЛИСТВЕННЫЙ  ЛЕС

    13 - 17

    ЛУГ

    17 - 21

    СНЕГ

    60 - 90

    ВОДНЫЕ    ПОВЕРХНОСТИ

    2 - 70

    ОБЛАКА

    60 - 80

       


        Рассмотрим рассеянную радиацию. Рассеяние в атмосфере может происходить на молекулах газов (молекулярное рассеяние) и частицах (крупных (l<<r), средних (l~r), мелких (l>>r)), находящихся в атмосфере, оно зависит также и от наличия облачности. Основы  этой теории заложены Рэлеем, но позже она была усоршенствована другими учеными уже для различных размеров, форм и свойств частиц. Для анализа   явлений рассеяния используют уравнение переноса излучения; запишем его в векторной форме[3:   (4),


    где Si - параметры Стокса (S1=I - суммарная интенсивность, S2=I*p*cos(Y0), Y0 - угол поворота  направления максимальной поляризации относительно плоскости референции, p - степень линейной поляризации, S3=I*p*sin(Y0), S4=I*q, q - степень эллиптичности поляризации),fij - матрица рассеяния. При молекулярном рассеянии  диполи под действием падающей волны начинают двигаться с ускорением, следовательно излучают волны с частотой падающей волны, т.е. происходит рассеяние света на данных  молекулах. Рассмотрим коэффициент молекулярного ослабления kMS и учтем, что рассеяние должно происходить тогда, когда показатель преломления частицы относительно среды n не равен единице, тогда:

     [3] (5) (l << r),

    где N - число частиц в единице объема, l - длина падающей волны. Также запишем функцию, показывающую «разбрасывание света по углам»:


    fMS(j)=3*tMS*(1+cos2(j))/(16*p)[3] (6),

    где tMS - оптическая толща молекулярного рассеяния. Если ввести параметр D, характеризующий анизотропию молекул, то формула (6) примет вид:


     fMS(j)=3*tMS*(1+D+(1-D)*cos2(j))/(16*p)[3] (7)

    Обычно молекулярный рассеянный свет поляризован:

     [3](8),

    где Pлин - степень линейной поляризации.

    При попадании света на крупные частицы, обычно находящиеся вблизи поверхности Земли, происходит частичная потеря импульса падающей электро-магнитной волны, т.е. на молекулу действует световое давление, тогда будем иметь эффекты дифракции, отражения и преломления, пронукновения электро-магнитной волны вовнутрь частицы.  В результате может возникнуть интерференция падающей волны и вышедшей из частицы за счет явления внутреннего отражения. Все эти явления описываются в теории Ми. Предположения теории Ми: частицы сферические, однородные, не сталкиваются; атмосфера - плоско-параллельный слой. Т.к. показатель преломления частиц, описываемых теорией Ми, - комплексный: m=n+i*c, где n - обычный показатель преломления, c - характеризует поглощение волны частицей.

    В результате рассеяния прямого солнечного излучения в атмосфере, она сама становится источником излучения, которое достигает земной поверхности в виде рассеянного излучения. Максимум в спектре рассеянной радиации смещен в более коротковолновую область, чем у солнечного спектра; также состав рассеянной радиации зависит от высоты Солнца (рис.4.[1]).


    Рис.4. Распределение энергии в спектре рассеянного света, посылаемого различными точками небесного свода.

         

        Рассеянная радиация также зависит и от облачности, что проиллюстрировано на рис.5.[1], который построен по экспериментальным данным для г. Павловска. Нередки случаи, когда рассеянная радиация достигает значений, сравнимых с потоком прямой солнечной радиации[1]. Это явление обычно происходит в северных широтах. Оно объяснимо тем, что чистый сплошной снежный покров имеет черезвычайно большую отражательную способность. Облака являются средами, которые могут сильно рассеивать свет; опыты показали, что плотные облака толщиной 50 - 100 метров уже полностью рассеивают прямые солнечные лучи.


    Рис.5. Рассеянная радиация атмосферы при безоблачном небе и при сплошной облачности (10 баллов).

     

    Реферат содержит

       

    СТРАНИЦ

    ТАБЛИЦ

    РИСУНКОВ

    ФОРМУЛ

    14

    1

    5

    8


     

     

     

    Литература

    1. «Курс метеорологии» под ред. Г.Н.Тверского, ГИДРОМЕТЕОИЗДАТ, Л., 1951г..

    2. Справочник «Атмосфера», ГИДРОМЕТЕОИЗДАТ, Л., 1991г..

    3. Лекции Павлова В.Е. по оптике атмосферы для студентов III - V курсов специализации «Оптическое зондирование атмосферы», АГУ, Барнаул, 1996г..

     



    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.