МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Биологическое окисление

    p> В отличие от этого молекулы, передающие электроны цитохромоксидазному комплексу, по-видимому, не переносят протонов, и в этом случае транспорт электронов, вероятно, связан с определенным аллостерическим изменением конформации белковых молекул, в результате которого какая-то часть белкового комплекса сама переносит протоны.
    Действие разобщителей.

    С 40-х годов известен ряд липофильных слабых кислот, способных действовать как разобщающие агенты, т.е. нарушать сопряжение транспорта электронов с синтезом АТФ. При добавлении к клеткам этих низкомолекулярных органических соединений митохондрии прекращают синтез АТФ, продолжая при этом поглощать кислород. В присутствии разобщающего агента, скорость транспорта электронов остается высокой, но протонный градиент не создается.
    Это простое объяснение этого эффекта: разобщающие агенты (например, динитрофенол, тироксин) действуют как переносчики Н+ (Н+-ионофоры) и открывают дополнительный путь - уже не через АТФ-синтетазу – для потока Н+ через внутреннюю митохондриальную мембрану.(13, 2000(
    Дыхательный контроль.

    Когда к клеткам добавляют разобщающий агент, например динитрофенол, поглощение кислорода митохондриями значительно возрастает, так как скорость переноса электронов увеличивается. Такое ускорение связано с существованием дыхательного контроля. Полагают, что этот контроль основан на прямом инги6ирующем влиянии электрохимического протонного градиента на транспорт электронов. Когда в присутствии разобщителя электрохимический градиент исчезает, не контролируемый более транспорт электронов достигает максимальной скорости. Возрастание градиента притормаживает дыхательную цепь, и транспорт электронов замедляется. Более того, если в эксперименте искусственно создать на внутренней мембране необычно высокий электрохимический градиент, то нормальный транспорт электронов прекратится совсем, а на некоторых участках дыхательной цепи можно будет обнаружить обратный поток электронов. Это позволяет предполагать, что дыхательный контроль отражает простой баланс между изменением свободной энергии при перемещении протонов, сопряженного с транспортом электронов, и изменением свободной энергии при самом транспорте электронов.Величина электрохимического градиента влияет как на скорость, так и на направление переноса электронов, так же как и на направление действия АТФ-синтетазы.

    Дыхательный контроль - это лишь часть сложной системы взаимосвязанных регуляторных механизмов с обратными связями, координирующей скорости гликолиза, расщепления жирных кислот, реакций цикла лимонной кислоты и транспорта электронов. Скорости всех этих процессов зависят от отношения
    АТФ:AДФ - они возрастают, когда это отношением уменьшается в результате усиленного использования АТФ. Например, АТФ-синтетаза внутренней митохондриальной мембраны работает быстрее, когда концентрации ее субстратов, т. е. .AДФ и Фн, увеличиваются. Чем выше скорость этой реакции, тем больше протонов перетекает в матрикс, быстрее рассеивая тем самым электрохимический градиент; а уменьшение градиента в свою очередь приводит к ускорению транспорта электронов.[1,1994]

    Митохондрии бурой жировой ткани – генераторы тепла.
    Всем позвоночным в молодом возрасте для образования тепла, в дополнение к механизму мышечного тремора, необходимо термогенное устройство. Такого рода устройство особенно важно для животных, впадающих в зимнюю спячку. Мышцы в состоянии тремора сокращаются и при отсутствии нагрузки, используя сократительные белки для гидролиза АТФ обычным для мышечных клеток образом и освобождая в виде тепла всю энергию, потенциально доступную при гидролизе
    АТФ. Необходимость особого термогенного устройства определяется прочно сопряженным окислительным фосфорилированием нормальных митохондрий. Если бы этот процесс мог быть разобщен, как это бывает в присутствии динитрофенола, он мог бы служить в качестве адекватного приспособления, производящего тепло; именно так это происходит в митохондриях бурого жира. Хотя эти митохондрий обладают обычной обратимой АТФазой, в них имеется также трансмембранная протонная транслоказа, посредством которой протоны могут возвращаться в матрикс и электрически шунтировать работу АТФазы. Если этот процесс достаточен для того, чтобы поддерживать окислительно- восстановительный потенциал водорода значительно ниже 200 мВ, синтез АТФ становится невозможным и окислительный процесс протекает свободно, в результате чего вся энергия освобождается в виде тепла.[2, 1994]


    Цикл лимонной кислоты (цикл трикарбоновых кислот, цикл Кребса).

    Цикл лимонной кислоты представляет собой серию реакций, протекающих в митохондриях, в ходе которых осуществляется катаболизм ацетильных групп и высвобождение водородных эквивалентов; при окислении последних поставляется свободная энергия топливных ресурсов тканей. Ацетильные группы находятся в составе ацетил-КоА (активного ацетата), тиоэфира кофермента А.

    Главная функция цикла лимонной кислоты состоит в том, что он является общим конечным путем окисления углеводов, белков и жиров, поскольку в ходе метаболизма глюкоза, жирные кислоты и аминокислоты превращаются либо в ацетил-СоА, либо в промежуточные соединения цикла. Цикл лимонной кислоты играет также главную роль в процессах глюконеогенеза, переаминирования, дезаминирования и липогенеза, Хотя ряд этих процессов протекает во многих тканях, печень - единственный орган, в котором идут все перечисленные процессы. Поэтому серьезные последствия вызывает повреждение большого числа клеток печени или замещение их соединительной тканью. О жизненно важной роли цикла лимонной кислоты свидетельствует и тот факт, что у человека почти не известны генетические изменения ферментов, катализирующих реакции цикла, так как наличие таких нарушений несовместимо с нормальным развитием.[10,1993]

    Открытие ЦТК.

    Впервые предположение о существовании такого цикла для окисления пирувата в животных тканях было высказано в 1937 году Гансом Кребсом. Эта идея родилась у него, когда он исследовал влияние анионов различных органических кислот на скорость поглощения кислорода суспензиями измельченных грудных мышц голубя, в которых происходило окисление пирувата.

    Грудные мышцы отличаются чрезвычайно высокой интенсивностью дыхания, что делает их особенно удобным объектом для изучения окислительной активности. Кребс также подтвердил, что обнаруженные ранее в животных тканях другие органические кислоты (янтарная, яблочная, фумаровая и щавелевоуксусная) стимулируют окисление пирувата. Кроме того, он нашел, что окисление пирувата мышечной тканью стимулируется шестиуглеродными трикарбоновыми кислотами - лимонной, цис-аконитовой и изолимонной, а также пятиуглеродной (-кетоглутаровой кислотой. Испытаны были и некоторые другие встречающиеся в природе органические кислоты, но ни одна из них не обнаружила подобной активности. Обращал на себя внимание сам характер стимулирующего действия активных кислот: даже малого количества любой из них было достаточно для того, чтобы вызвать окисление во много раз большего количества пирувата.[9, 1991]

    Простые эксперименты, а также логические рассуждения позволили Кребсу высказать предположение, что цикл, который он назвал циклом лимонной кислоты, является главным путем окисления углеводов в мышце. После, цикл лимонной кислоты был обнаружен практически во всех тканях высших животных и растений и у многих аэробных микроорганизмов. За это важное открытие Кребс был удостоен в 1953 году Нобелевской премии. Юджин Кеннеди и Альберт
    Ленинджер показали позднее, что все реакции цикла лимонной кислоты протекают в митохондриях животных клеток. В изолированных митохондриях печени крысы были обнаружены не только все ферменты и коферменты цикла лимонной кислоты; здесь же, как выяснилось, локализованы все ферменты и белки, которые требуются для последней стадии дыхания, т.е. для переноса электронов и окислительного фосфорилирования. Поэтому митохондрии с полным правом называют «силовыми станциями» клетки.

    Катаболическая роль цикла лимонной кислоты

    Цикл начинается со взаимодействия молекулы ацетил-СоА с щавелевоуксусной кислотой (оксалоацетатом), в результате которого образуется шестиуглеродная трикарбоновая кислота, называемая лимонной.
    Далее следует серия реакций, в ходе которых происходит высвобождение двух молекул С02 и регенерация оксалоацетата. Поскольку количество оксалоацетата, необходимое для превращения большого числа ацетильных единиц в С02, весьма невелико, можно считать, что оксалоацетат выполняет каталитическую роль.

    Цикл лимонной кислоты является механизмом, обеспечивающим улавливание большей части свободной энергии, освобождаемой в процессе окисления углеводов, липидов и белков. В процессе окисления ацетил-СоА благодаря активности ряда специфических дегидрогеназ происходит образование восстановительных эквивалентов в форме водорода или электронов. Последние поступают в дыхательную цепь; при функционировании этой цепи происходит окислительное фосфорилирование, то есть синтезируется АТФ.

    Ферменты цикла лимонной кислоты локализованы в митохондриальном матриксе, где они находятся либо в свободном состоянии, либо на внутренней поверхности внутренней митохондриальной мембраны; в последнем случае облегчается перенос восстановительных эквивалентов на ферменты дыхательной цепи, локализованные во внутренней митохондриальной мембране.[11, 1989]

    Реакции ЦТК.

    Начальная реакция - конденсация ацетил-СоА и оксалоацетата, катализируется конденсирующим ферментом, цитратсинтетазой, при этом происходит образование связи углерод-углерод между метальным углеродом ацетил-СоА и карбонильным углеродом оксалоацетата. За реакцией конденсации, приводящей к образованию цитрил-СоА, следует гидролиз тиоэфирной связи, сопровождающийся потерей большого количества свободной энергии в форме теплоты; это определяет протекание реакции слева на право до ее завершения:

    Ацетил-СоА + Оксалоацетат + Н2О > Цитрат + CoA-SH

    Превращение цитрата в изоцитрат катализируется аконитазой, содержащей железо в двухвалентном состоянии. Эта реакция осуществляется в две стадии: сначала происходит дегидратация с образованием цис-аконитата (часть его остается в комплексе с ферментом), а затем - гидратация и образование изоцитрата:

    Цитрат ? цис -Аконитат ? Изоцитрат – Н2О

    Реакция ингибируется фторацетатом, который сначала превращается во фторацетил-СоА; последний конденсируется с оксалоацетатом, образуя фторцитрат. Непосредственным ингибитором аконитазы является фторцитрат, при ингибировании накапливается цитрат.

    Эксперименты с использованием промежуточных соединений показывают, что аконитаза взаимодействует с цитратом ассиметрично: она всегда действует на ту часть молекулы цитрата, которая образовалась из оксалоацетата.
    Возможно, что цис-аконитат не является обязательным интермедиатом между цитратом и изоцитратом и образуется на боковой ветви основного пути.

    Далее изоцитратдегидрогеназа катализирует дегидрогенирование с образованием оксалосукцината. Описаны три различных формы изоцитратдегидрогеназы. Одна из них, НАД-зависимая, найдена только в митохондриях. Две другие формы являются НАДФ-зависимыми, причем одна из них также находится в митохондриях, а другая в цитозоле. Окисление изоцитрата, связанное с работой дыхательной цепи, осуществляется почти исключительно
    НАД-зависимым ферментом:
    Изоцитрат + НАД+ ? Оксалосукцинат (в комплексе с ферментом) ? альфакетоглутарат + СО2+ НАДН2

    Рисунок 5. Реакции цикла Кребса.[10,1993]

    Далее следует декарбоксилирование с образованием альфакетоглутарата, которое также катализируется изоцитратдегидрогеназой. Важным компонентом реакции декарбоксилирования являются ионы Mg2+ (или Мn2+). Судя по имеющимся данным, оксалосукцинат, образующийся на промежуточной стадии реакции, остается в комплексе с ферментом.

    Альфакетоглутарат, в свою очередь, подвергается окислительному декарбоксилированию, сходному с окислительным декарбоксилированием пирувата: в обоих случаях субстратом является альфакетокислота. Реакция катализируется альфакетоглутаратдегидрогеназным комплексом и требует участия того же набора кофакторов - тиаминдифосфата, липоата, НАД+, ФАД и
    СоА; в результате образуется сукцинил-СоА - тиоэфир, содержащий высокоэнергетическую связь.

    ?-кетоглуторат + НАД+ + CoA-SH > Сукцинил-СоА + СО2 + НАДН+Н+

    Равновесие реакции настолько сильно сдвинуто в сторону образования сукцинил-СоА, что ее можно считать физиологически однонаправленной. Как и при окислении пирувата, реакция ингибируется арсенатом, что приводит к накоплению субстрата (альфакетоглутарат).

    Продолжением цикла является превращение сукцинил-СоА в сукцинат, катализируемое сукцинаттиокиназой (сукцинил-СоА-синтетазой):

    Сукцинил-СоА + ФН + ГДФ? Сукцинат + ГТФ + CoA-SH

    Одним из субстратов реакций является ГДФ (или ИДФ), из которого в присутствии неорганического фосфата образуется ГТФ (ИТФ). Это - единственная стадия цикла лимонной кислоты, в ходе которой генерируется высокоэнергетическая фосфатная связь на субстратном уровне; при окислительном декарбоксилировании ?-кетоглутарата потенциальное количество свободной энергии достаточно для образования НАДН и высокоэнергетической фосфатной связи. В реакции, катализируемой фосфокиназой, АТФ может образовываться как из ГТФ, так и из ИТФ. Например:

    ГТФ+АДФ (ГДФ+АТФ.

    В альтернативной реакции, протекающей во внепеченочных тканях и катализируемой сукцинил-СоА-ацетоацетат-СоА-трансферазой, сукцинил-СоА превращается в сукцинат сопряженно с превращением ацетоацетата в ацетоацетил-СоА. Впечени имеется диацилазная активность, обеспечивающая гидролиз части сукцинил-СоА с образованием сукцината и СоА.

    Далее сукцинат дегидрогенируется, затем присоединяется молекула воды, и следует еще одна стадия дегидрогенирования, приводящая к регенерации оксалоацетата:

    Сукцинат + ФАД ( Фумарат + ФАДН2

    Первое дегидрогенирование катализируется сукцинатдегидрогеназой, связанной с внутренней поверхностью внутренней митохондриальной мембраны.
    Это единственная дегидрогеназная реакция ЦТК, в ходе которой осуществляется прямой перенос с субстрата на флавопротеин без участия НАД+. Фермент содержит ФАД и железо-серный белок. В результате дегидрогенирования образуется фумарат. Как показали эксперименты с использованием изотопов, фермент стереоспецифичен к транс-атомам водорода метиленовых групп сукцината. Добавление малоната или оксалоацетата ингибирует сукцинатдегидрогеназу, что приводит к накоплению сукцината.

    Фумараза (фумаратгидротаза) катализирует присоединение воды к фумарату с образованием малата:

    Фумарат +Н2О ( L-малат

    Фумараза специфична к L-изомеру малата, она катализирует присоединение компонентов молекулы воды по двойной связи фумарата в транс-конфигурации.
    Малатдегидрогеназа катализирует превращение малата в оксалоацетат, реакция идет с участием НАД+:

    L-малат + НАД+ ( 0ксалоацетат + НАДН2

    Хотя равновесие этой реакции сильно сдвинуто в направлении малата, реально она протекает в направлении оксалоацетата, поскольку он вместе с
    НАДН постоянно потребляется в других реакциях.

    Ферменты цикла лимонной кислоты, за исключением альфакетоглутарат- и сукцинатдегидрогеназы, обнаруживаются и вне митохондрий. Однако некоторые из этих ферментов (например, малатдегидрогеназа) отличаются от соответствующих митохондриальных ферментов.

    Энергетика цикла лимонной кислоты.

    В результате окисления, катализируемого дегидрогеназами ЦТК, на каждую катаболизируемую за период одного цикла молекулу ацетил-СоА образуются три молекулы НАДН и одна молекула ФАДН2. Эти восстановительные эквиваленты передаются в дыхательную цепь, локализованную в митохондриальной мембране.
    При прохождении по цепи восстановительные эквиваленты НАДН генерируют три высокоэнергетические фосфатные связи посредством образования АТФ из АДФ в процессе окислительного фосфорилирования. За счет
    ФАДН2 генерируется только две высокоэнергетические фосфатные связи, поскольку ФАДН2 переносит восстановительные эквиваленты на кофермент Q и, следовательно, в обход первого участка цепи окислительного фосфорилирования в дыхательной цепи. Еще один высокоэнергетический фосфат генерируется на одном из участков цикла лимонной кислоты, то есть на субстратном уровне, при превращении сукцинил-СоА в сукцинат. Таким образом, за период каждого цикла образуется 12 новых высокоэнергетических фосфатных связей.

    Регуляция цикла лимонной кислоты.

    Основные процессы, которые поставляют и запасают энергию в клетках, могут быть в общей форме изображены следующим образом: глюкоза пируват ( ацетил-СоА жирные кислоты

    AДФ

    АТФ

    С02

    Регуляция этой системы inter alia должна гарантировать постоянное поступление АТФ соразмерно с существующими в данный момент энергетическими потребностями, обеспечивать превращение избытка углеводов в жирные кислоты через пируват и ацетил-СоА и наряду с этим контролировать экономное расходование жирных кислот через ацетил-СоА как ключевой продукт для входа в цикл лимонной кислоты.

    Цикл лимонной кислоты поставляет электроны в электронпереносящую систему, в которой поток электронов сопряжен с синтезом АТФ и в меньшей степени снабжает восстановительными эквивалентами системы биосинтеза промежуточных продуктов. В принципе цикл не может протекать быстрее, чем это позволяет использование образуемой АТФ. Если бы весь AДФ клетки превратился в АТФ , не могло бы быть никакого дальнейшего потока электронов от НАДH, который накапливается, к 02. Ввиду отсутствия НAД+, необходимого участника процессов дегидрирования цикла, последний перестал бы функционировать. Существуют более тонкие регуляторные приспособления, которые модулируют действие ферментов в самом цикле лимонной кислоты.

    Сукцинатдегидрогеназа находится во внутренней митохондриальной мембране. Все остальные ферменты растворены в матриксе, заполняющем внутреннее пространство митохондрии. Измерения относительных количеств этих ферментов и концентраций их субстратов в митохондриях указывают, что каждая реакция протекает с одинаковой скоростью. Как только пируват (или другой потенциальный источник ацетил-СоА) поступает внутрь матрикса митохондрии, весь цикл протекает внутри этого отсека.

    В некоторых участках стимуляция или ингибирование определяется относительными концентрациями НAДH/НAД, ATФ/AДФ или АМФ, ацетил-СоА/СоА или сукцинил-СоА/СоА. Когда эти отношения высоки, клетка достаточно обеспечена энергией и поток через цикл замедлен; когда же они низки, клетка испытывает потребность в энергии, и поток через цикл ускоряется.

    Как необратимая реакция, соединяющая метаболизм углеводов с циклом лимонной кислоты, пируватдегидрогеназная реакция должна хорошо контролироваться. Это достигается двумя способами. Во-первых, фермент, который активируется несколькими интермедиаторами гликолиза, конкурентно ингибируется своими собственными продуктами - НAДH и ацетил-
    СоА. При прочих равных условиях увеличение соотношения НAДH/НAД+ от 1 до 3 вызывает 90%-е снижение скорости реакции, а увеличение отношения ацетил-
    СоА/СоА приводит к количественно подобному эффекту. Эффект проявляется мгновенно. Медленнее возникают, но дольше действуют эффекты другого регуляторного устройства. С сердцевиной каждой молекулы дигидролипоилтрансацетилазы связано около пяти молекул киназы пируватдегидрогеназы, которая за счет АТФ катализирует фосфорилирование серинового остатка в (-цепи пируватдегидрогеназного компонента.
    Будучи фосфорилирован, фермент не способен декарбоксилировать пируват.

    Когда происходит окисление жирных кислот, пируватдегидрогеназа заметно ингибируется. По-видимому, это явление объясняется сопутствующими процессу окисления высокими концентрациями АТФ, ацетил-СоА и НAДH.
    Большинство тканей содержат избыток пируватдегидрогеназы, так что после приема корма в печени, а также в мышце и в жировой ткани у животных в состоянии покоя лишь 40, 15 и 10% пируватдегидрогеназы соответственно находится в активной, нефосфорилированной форме. Когда возрастает потребность в АТФ, концентрации НAД+, СоА и AДФ возрастают за счет использования НAДH, ацетил-СоА и АТФ, а киназа инактивируется. Однако фосфатаза продолжает функционировать вновь активируя дегидрогеназу.
    Повышение Са2+ может активировать митохондриальную фосфатазу.

    Страницы: 1, 2, 3, 4


    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.