МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Генетичні особливості мікроорганізмів

    Генетичні особливості мікроорганізмів

    Зміст


    Вступ

    Розділ 1. Характеристика генетичного апарату бактерій

    1.1 Гени та генетична карта

    1.2 Фенотипова і генотипова мінливість прокаріот

    1.3 ДНК бактерій

    Розділ 2. Генетичні процеси в клітинах мікроорганізмів

    2.1 Генетичні рекомбінації у бактерій: трансформація, конюгація, трансдукція

    2.2 Регуляція генної активності

    2.3 Позахромосомні фактори спадковості

    2.4 Використання на практиці досягнень генетики мікроорганізмів

    Висновки

    Список використаної літератури


    Вступ

    Надзвичайно важливим серед досягнень мікробіології останньої чверті XIX ст. є відкриття неклітинних форм життя — вірусів. Тоді багато вчених вважали, що бактерії є найменшими і найпростішими організмами, і що саме вони стоять на межі живої і неживої природи.

    Захворювання рослин, тварин і людини, вірусна природа яких у даний час установлена, у протягом багатьох сторіч завдавали шкоди господарству і здоров'ю людини. Хоча багато з цих хвороб були описані, але спроби встановити їхню причину і виявити збудник залишались безуспішними.

    У 1915 р. англійський бактеріолог Ф. Туорт, а в 1917 р. канадієць Ф. д'Ерель, незалежно один від одного, відкрили віруси бактерій, названі д'Ерелем бактеріофагами («пожирачі бактерій»). Однак слід зазначити, що ще за 19 років до цього відкриття, в 1898 p., вітчизняний мікробіолог М.Ф.Гамалія описав явище лізису бацил сибірки під впливом невідомого агента, названого вченим бактеріолізином.

    Отже, протягом 25 років було відкрито віруси, що уражують усіх представників царства природи: рослини, тварини і мікроорганізми. Проте упродовж багатьох років мікроорганізми не привертали до себе особливої уваги.

    Мета роботи: проаналізувати генетичні особливості мікроорганізмів.

    Завдання роботи:

    1)                Дати характеристику генетичного апарату бактерій;

    2)                Розглянути генетичні процеси в клітинах мікроорганізмів та їх особливості.

     

    Розділ 1. Характеристика генетичного апарату бактерій


    1.1 Гени та генетична карта


    У бактеріальних клітинах генетичний аппарат знаходиться у нуклеоїді. Основною генетичною структурою бактерій є бактеріальна хромосома, яка представлена молекулою ДНК замкнутою у кільце. Довжина кільця може досягати 1,0 – 1,4 мм. У нормі в бактерій є одна хромосома, бактерії як і всі прокаріоти є гаплоїдні (їх генетичний матеріал представлений одним набором генів). Проте, описано бактерії, що мають декілька копій бактерільної хромосоми. Хромосома має окремі ділянки – гени (фрагменти молекули ДНК), які розміщені дискретно і несуть генетичну інформацію відносно всіх ознак, притаманних клітині. Ген є основним фактором, який зумовлює спадкові властивості мікроорганізмів. Сукупність генів складає геном мікроорганізму.

    Гени прокаріотної клітини складаються із безперервно кодуючої послідовності нуклеотидів, тобто прокаріотам властиве тісне зчеплення генів. Хромосоми бактерій володіють однією групою зчеплень генів. Гени бактерій складаються із промотора, білок-кодуючої ділянки і термінатора транскрипції.

    Послідовність розміщення генів на бактеріальній хромосомі може бути відображена на генетичній карті, яка є умовною схемою хромосоми бактерії.На цій карті зазначено послідовність окремих генів, відносну довжину самих генів і відстань між ними, виражену в умовних одиницях рекомбінації. За таку одиницю умовно прийнята частота рекомбінації, яка дорівнює 1%. До 1972 р. було встановлено 460 генів на хромосомній карті кишкової палички.

    Генетичні карти складені також і для сінної палички і ін. мікроорганізмів.

    Генетичний матеріал у мікробів може знаходитися не тільки в хромосомі, але і в позахромосомних структурах – плазмідах. Плазміди можуть знаходитися в цитоплазмі або бути в інтегрованому стані з хромосомою – тоді їх називають епісомами.

    Крім плазмід, у деяких бактерій виявлені помірні фаги і мігруючі елементи (транспозони і ІS-елементи). Транспозони і ІS- елементи входять як правило в склад хромосом, але здатні переходити із хромосоми в плазміду.

    За хімічною природою плазміди є лінійними, відкритими і закритими кільцевими молекулами ДНК довжиною від 2 до 6000 (т.п.н). У лінійних плазмід кінці їх ДНК захищені від дії нуклеаз білками,або з”єднуються ковалентно. Коли молекули ДНК скручені, то вони не руйнуються нуклеазами клітини.

    Основною властивістю плазмід є їх здатність до автономної реплікації,завдяки наявності всієї системи самовідтворення.

    Плазміди не є обов”язковим генетичним матеріалом бактерій, які є необхідними для прояву їх життєдіяльності. В цей же час плазміди можуть визначати дуже важливі властивості бактерій, наприклад здатність до передавання генетичного матеріалу від донорських F+—клітин до F- — клітин-реціпієнтів при кон”югації (F-плазміда); стійкість до антибіотиків, сульфаніламідних препаратів (R – плазміда), здатність до синтезу токсинів (Ent-плазміда); утворення фімбрій, якими ентеробактерії прикріплюються до кишкового епітелію, здатність до синтезу бактерицидних речовин — бактеріоциногенія.

    Всі відомі плазміди поділяють на кон”югативні і некон`югативні. Кон”югативні плазміди переносять власну ДНК від клітини-донора до клітини-реціпієнта при кон”югації.

    Некон`юговані плазміди не володіють здатністю до кон”гативного перенесення із однієї клітини в другу. Молекулярна маса кон`югативних плазмід 26-75х106, а некон”югованих не більше 10х106а.од.м. Кон”югативні плазміди характерні для грамнегативних бактерій.

    В одній бактеріальній клітині може одночасно знаходитись декілька типів плазмід. Якщо плазміди не можуть існувати постійно в одній клітині, то їх називають несумісними.

    Несумісними є плазміди, які мають подібну будову.

    Для кон`югативних плазмід характерне явище поверхневого виключення, коли плазмідна ДНК затруднено проходить через клітинну стінку, якщо в ній є плазміда з аналогічною детермінантою. Плазміди надають клітинам різні фенотипові ознаки: стійкість до антибіотиків, катіонів (ртуті), аніонів (арсену), мутагенів, бактеріоцинів. Вчені вважають,що плазміди є факторами, які підвищують життєздатність бактерій в організмі господаря і в оточуючому середовищі.


    1.2 Фенотипова і генотипова мінливість прокаріот


    Генетика прокаріот вивчає закономірності спадковості і мінливості організмів.

    Спадковість прокаріот забезпечує збереження і точне відтворення ознак даного виду.

    Мінливість визначає появу відмінностей в ознаках між особинами одного виду бактерій, що в процесі еволюції приводить до винекнення різноманітних форм життя.

    Для прокаріот як і для еукаріот характерні два типи мінливості: генотипова (спадкова) і фенотипова (модифікаційна).

    Повний набір генів, яким володіє клітина мікроорганізма є генотипом. Прояв сукупності спадкових морфологічних ознак і фізіологічних процесів називається фенотипом (від гр. Фаіно — проявляти, показувати). Подібні мікроорганізми за генотипом можуть істотно відрізнятися за фенотипом. Фенотипові відмінності між мікроорганізмами, які мають однаковиий генотип, називаються модифікаціями, або фенотиповими адаптаціями. Таким чином, взаємодія генетичних задатків з зовнішнім середовищем може бути причиною винекнення різних фенотипів. Модифікації існують до того часу, поки діє фактор, який їх викликає, вони не передаються по спадковості. Фенотипова мінливість не приводить до змін генетичного аппарату бактерій, вона носить адаптаційний характер. Наприклад, бактерії роду Azotobacter активно фіксують молекулярний азот тоді, коли в грунті йго не вистачає, коли в грунт внести мінеральні азотні добрива, то азотфіксація знижується.

    В природі фенотипові відмінності часто повторюються в житті прокаріот. Нерідко вони носять циклічний характер, який пов”язаний з сезонними кліматичними факторами. Наприклад, в грунтах південних районів в сезон посушливого літа більшість бактерій утворює слизистий матрикс, який оберігає клітину від висихання. Фенотипова мінливість сприяє виживанню мікробної популяції.

    Генотипова мінливість прокаріот проявляється у вигляді мутацій і рекомбінацій і є наслідком порушень структури генетичного апарату.

    За походженням розрізняють спонтанні і індуковані мутації.

    Спонтанні мутації виникають в популяціях прокаріот без видимої зовнішньої дії. Вони носять випадковий, ненаправлений характер і виникають самовільно. Спонтанні мутації виникають в результаті помилок ДНК — полімерази під час реплікації ДНК під впливом природнього фону випромінювань, хім. речовин. Спонтанні мутації служать основним джерелом природньої мінливості мікроорганізмів і лежать в основі іх еволюції.

    Індукованими називають ті мутації, які виникають під впливом певного мутагенного фактора. Вперше індуковані мутанти дріжджів було одержано Г.А. Надсоном і Г.С. Філіповим у 1925 році. Мутації виникають з частотою 10-4 —10-10 за одну генерацію. Мутагенні фактори можуть бути біологічної, хімічної і фізичної природи.

    Біологічні мутагенні фактори — це віруси бактерій. ДНК вірусів включається в геном бактерії і викликає дестабілізацію сусідніх генів. Біологічними мутагенними факторами можуть бути генетичні елементи, які здатні переміщатися (вони називаються бактеріальні транспозони) — це сегменти ДНК, які здатні до внутрішніх і міжхромосомних переміщень.

    Серед хімічних мутагенів можна виділити такі групи: інгібітори попередників нуклеїнових кислот, аналоги азотистих основ (5-хлор-, 5-бром-, 2-амінопурин), окислювачі (HNO3), відновники і вільні радикали, ін.

    Фізичні мутагенні фактори—іонізуюче випромінювання, температура, УФ-промені, рентгенівські промені, гама-промені, протони.

    Вперше можливість виникнення індукованих мутацій показали в 1925 році Г.А. Надсон і Г.С. Філіпов внаслідок опромінення дріжджів рентгенівськими променями.

    За характером змін, які виникають в первинній структурі ДНК виділяють генні і хромосомні мутації.

    Генні мутації — зачіпають тільки один ген і найчастіше є точковими. Внаслідок точкових мутацій спостерігається випадання, вставка або заміна однієї пари нуклеотидів.

    Хромосомні мутації поширюються на декілька генів. Вони виникають внаслідок перебудов в окремих фрагментах ДНК. Вони проявляються у формі дилеції — випадання певного числа нуклеотидів; інверсії — обернення ділянки ДНК на 1800; дуплікації— повторення якого-небуть фрагмента ДНК. Нерідко хромосомні мутації приводять до дезінтеграції всіх систем бактеріальної клітини, що супроводжується летальним ефектом.

    За локалізацієюв генетичних структурах мутації поділяються на хромосомні і плазмідні.

    Перші виникають в хромосомах, другі в плазмідах. Розрізняють умовно-летальні мутації, при яких клітина гине, вони стосуються життєво-важливих генів.

    За напрямом зміни ознаки мутації бувають прямі і зворотні. Перші є змінами в генах бактерій дикого типу, наприклад поява ауксотрофних мутантів із прототрофів. Зворотними називають мутації від мутантного типу до дикого, наприклад: реверсія (повернення) від ауксотрофності до прототрофності. Зворотні мутації, які приводять до відновлення фенотипу і генотипу, називають прямими. Зворотні мутації, які відновлюють лише фенотип, а генотип лишається мутованим, дістали назву супресорних. При цьому відбувається вторинна пряма мутація в іншому гені, яка пригнічує виявлення першої.

    Протягом еволюції у прокаріотів виробились способи захисту генетичного матеріалу, від пошкодження різними мутагенами. У них виявлено ефективні сиситеми репарації мутаційних пошкоджень ДНК.

    Особливою формою мінливості прокаріотів, в основі якої також лежать мутації, є дисоціація — розчеплення однорідної популяції бактерій за культуральними властивостями на типи, які відрізняються від вихідного зовнішнім виглядом і структурою колоній, а також стійкими змінами деяких фізіолого-біохімічних властивостей. Найчастіше за дисоціації спостерігаються зміни форми і структури колоній на твердих поживних середовищах. (S-форма — гладкий тип колоній, R-форма — шорсткий тип колоній.)

    За винекнення фонотипових змін всі мутації поділяються на морфологічні, фізіологічні і біохімічні. Морфологічним змінам передують біохімічні. Біохімічні мутанти діляться на ауксотрофні і ферментативні. Ауксотрофні бактерії - це клітини, які втратили здатність самостійно синтезувати амінокислоти,пурини,пірамідини, вітаміни та інші фактории росту.

    Ферментативні бактерії втрачають здатність зброджувати вуглеводи. Біохімічні мутанти використовують як експерементальні моделі в генетиці бактерій.

    В результаті мутацій можуть виникнути мутанти: 1) які втратили стійкість до фізичних факторів (t, випромінювань); 2) в яких появилася стійкість до антибіотиків, лікарських препаратів, токсичних речовин і фагів; 3) зниження вірулентності; 4) втрата здатності до генетичної рекомбінації.

    Мутації передаються у спадок від материнської клітини до дочірньої.

    1.3 ДНК бактерій


    Генетичний апарат бактерій представлений молекулою ДНК, що у вигляді нуклеотида розташовується в центральній частині цитоплазми. У вірусів геном представлений ДНК або ж РНК. Молекула ДНК складається з великого числа нуклеотидов. Кожен нуклеотид являє собою з'єднання з фосфату, цукру й азотної підстави. У ДНК входить цукор дизоксирибоза, у РНК - рибоза. У молекулу ДНК вірусів і фагов може входити від декількох тисяч до сотень тисяч нуклеотидов, у ДНК бактерій і найпростіших до 10 млн., а в ДНК вищих організмів до 1 млрд.

    Англійський учений Ф. Лемент і американський Дж. Уотсон (1953) обґрунтували представлення про ДНК. На їхню думку молекула ДНК складається їхніх двох ниток, спірально закручених одна навколо іншої. Діаметр подвійної спіралі ДНК дорівнює 2 нм, а відстань між витками 3,4 нм. На кожен виток спирали приходиться 10 пара нуклеотидов. Відстань між азотистими підставами складає 0,34 нм. Її порівнюють із крученими сходами. Якщо згорнуту в спіраль ДНК розгорнути, то вона приймає вид сходів. Цукор і фосфат складають основу подовжніх ниток, "поперечини" складаються з азотистих основ. Азотисті підстави - щільні кільцеподібні з'єднання з атомів С и N (аденин, гуанін, Тимин, цитозин). Ті самі у всіх видів організмів. ДНК різних видів розрізняється порядком чергування зазначених азотистих основ. Як відомо, до складу білків входять 20 амінокислот. Кожній амінокислоті відповідає визначений триплет, тобто три азотистих підстави. Сукупність усіх триплетів одержала назву генетичного коду. Код однаковий у бактерій, вірусів, найпростіших, тварин, людини, тому що послідовність чергування триплетів у молекулі ДНК і молекулі визначеного білка виявляються єдиними в усім органічному світі. У цій єдності будівлі ДНК - найбільша єдність органічного світу. Азотисті підстави в ДНК двох видів:

    1. Двокільцеві (пуринові) - аденін, гуанін - 12 ангстрем;

    2. Однокільцеві (піримідинові) - тимін, цитозин - 8 ангстрем.

    Азотисті підстави нуклеотидів укладені усередині між витками спирали ДНК і з'єднані водневими зв'язками, які потребують строгої парності основ. А саме, Аденін зв'язується з Тіаміном, Гуанін з Цитазином. Чаргафф (1960), а потім радянські вчені А.Н. Бєлозерський і А.С. Спирин показали, що в будь-якій тканині рослин і тварин, у бактеріальній клітині і вірусній частці, вміст молекул аденіну дорівнює вмісту молекул Тиміну, а вміст цитозина - вмісту гуаніну. Це правило нуклеотидних відносин (А + Г/Т + Ц = 1), що містить в основі будівлі всіх ДНК одержало назву по імені автора - правило Чаргоффа. Сума пуринових основ у будь-якій молекулі дорівнює сумі піримідинових основ. Ця закономірність обґрунтована на великій кількості видів організмів. Вона є доказом того, що усередині спіралі ДНК проти кожної пуринової основи знаходиться піримідинове і, навпаки. Згідно правила Чаргоффа аденін одного ланцюга ДНК зв'язаний тільки з Тиміном інший, а гуанін тільки з цитозином. Пара Аденін-Тимін зв'язана двома водневими зв'язками, а гуанін-цитозин - трьома. Така закономірність з'єднання азотистих основ називається комплементарністю, а азотисті основи комплементарними, тобто взаємно доповнюють один одного. Азотисті основи орієнтовані до середини спирали. Для хромосом еукаріот характерна лінійна будова молекули ДНК, у прокаріотів молекула ДНК замкнута в кільце.

    Комплементарність азотистих основ у молекулі ДНК складає головну сутність молекулярних основ спадковості і дозволяє зрозуміти, як при розподілі клітки синтезуються тотожні молекули ДНК.

    Перед кожним подвоєнням хромосом і розподілом клітки відбувається реплікація (подвоєння) ДНК. Реплікацією називають процес самокопіювання молекули ДНК із дотриманням порядку чергування нуклеотидів, властивим материнським комплементарним ниткам.

    Спіралеподібна дволанцюгова ДНК спочатку розплітається (розкручується) уздовж осі, водневі зв'язки між азотистими основами рвуться і ланцюги розходяться. Потім, до кожного ланцюга пристроюються комплементарні азотисті основи й утворюються дві нові дочірні молекули ДНК. Такий спосіб подвоєння молекул, при якому кожна дочірня молекула містить один материнську й один знову синтезований ланцюг, називають напівконсервативним.

    Процес реплікації здійснюється за допомогою ферментів, що одержали назва ДНК-полімераз. Ділянка молекули ДНК, у якому почали розплітатися комплементні нитки, називається вилкою реплікації. Вона утвориться в прокаріот у визначеній генетично детермінованій точці. У молекулі ДНК у еукаріот таких точок ініціації реплікації ("стартових точок") буває кілька. У еукаріот процес реплікації ДНК йде неоднаково. Пояснюється це тим, що полінуклеотидні ланцюга в молекулі ДНК антирівнобіжні, тобто 5'-кінець одного ланцюга з'єднується з 3'-кінцем інший, і навпаки. Материнський ланцюг, на якій синтез йде від крапки старту 5'->3' у виді суцільної лінії, називається лідируючої, а другий ланцюг, на якій синтез йде від 3'->5' (у протилежному напрямку) окремими фрагментами одержала назву запізнілої. Синтез цього ланцюга складніше синтезу лідируючого ланцюга. Він протікає за участю ферменту лігази окремими фрагментами. Ці фрагменти (ділянки кодової нитки ДНК) містять у еукаріот 100-200, а в прокаріот 1000-2000 нуклеотидів. Вони одержали назву фрагментів Оказаки.

    Фрагмент ДНК від однієї точки початку реплікації до іншої точки утворить одиницю реплікації - реплікон. Реплікація починається з визначеної точки (локус orі) і продовжується доти, поки весь реплікон не буде дуплікований. Молекули ДНК прокаріотичних клітин містять велике число репліконів, тому подвоєння ДНК починається в декількох точках. У різних репліконах подвоєння може йти в різний час або одночасно.

    Реплікація молекул ДНК у прокаріот протікає трохи інакше, ніж у еукаріот. У прокаріот одна з ниток ДНК розривається й один кінець її прикріплюється до клітинної мембрани, а на протилежному кінці відбувається синтез дочірніх ниток. Такий синтез дочірніх ниток ДНК одержав назву "обруча, що котиться,". Реплікація ДНК протікає швидко. Так, у бактерії швидкість реплікації складає 30 мкм у хвилину. За хвилину до нитки-матриці приєднується близько 500 нуклеотидів, у вірусів за цей час - близько 900 нуклеотидів. У еукаріот процес реплікації протікає повільно. У них дочірня нитка подовжується на 1,5-2,5 мкм у хвилину.

    Страницы: 1, 2


    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.