МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Качественные особенности живой материи. Уровни организации живого

    РНК - полимер, по структуре сходный с одной цепочкой ДНК, но меньших размеров. Мономеры РНК - нуклеотиды, состоящие из фосфорной кислоты, углевода рибозы и азотистого основания. Вместо тимина в РНК присутствует урацил. Известны три вида РНК: информационная (и-РНК) - передает информацию о структуре белка с молекулы ДНК; транспортная (т-РНК) - транспортирует аминокислоты к месту синтеза белка; рибосомная (р-РНК) - содержится в рибосомах, участвует в поддержании структуры рибосомы.

    Очень важную роль в биоэнергетике клетки играет адениловый нуклеотид, к которому присоединены два остатка фосфорной кислоты. Такое вещество называют аденозинтрифосфорной кислотой (АТФ). АТФ - универсальный биологический аккумулятор энергии: световая энергия солнца и энергия, заключенная в потребляемой пище, запасается в молекулах АТФ. АТФ - неустойчивая структура, при переходе АТФ в АДФ (аденозиндифосфат) выделяется 40 кДж энергии. АТФ образуется в митохондриях клеток животных и при фотосинтезе в хлоропластах растений. Энергия АТФ используется для совершения химической (синтез белков, жиров, углеводов, нуклеиновых кислот), механической (движение, работа мышц) работ, трансформации в электрическую или световую (разряды электрических скатов, угрей, свечение насекомых) энергии.

    Белки - непериодические полимеры, мономерами которых являются аминокислоты. В состав всех белков входят атомы углерода, водорода, кислорода, азота. Во многие белки, кроме того, входят атомы серы. Есть белки, в состав которых входят также атомы металлов - железа, цинка, меди. Наличие кислотной и основной групп обусловливает высокую реактивность аминокислот. Из аминогруппы одной аминокислоты и карбоксила другой выделяется молекула воды, а освободившиеся электроны образуют пептидную связь: CO-NN (ее открыл в 1888 году профессор А.Я. Данилевский), поэтому белки называют полипептидами. Молекулы белков - макромолекулы. Известно много аминокислот. Но в качестве мономеров любых природных белков - животных, растительных, микробных, вирусных - известно только 20 аминокислот. Они получили название "волшебных". Тот факт, что белки всех организмов построены из одних и тех же аминокислот - еще одно доказательство единства живого мира на Земле.

    В строении молекул белков различают 4 уровня организации:

    1. Первичная структура - полипептидная цепь из аминокислот, связанных в определенной последовательности ковалентными пептидными связями.

    2. Вторичная структура - полипептидная цепь в виде спирали. Между пептидными связями соседних витков и другими атомами возникают многочисленные водородные связи, обеспечивающие прочную структуру.

    3. Третичная структура - специфическая для каждого белка конфигурация - глобула. Удерживается малопрочными гидрофобными связями или силами сцепления между неполярными радикалами, которые встречаются у многих аминокислот. Есть также ковалентные S-S-связи, возникающие между удаленными друг от друга радикалами серосодержащей аминокислоты цистеина.

    4. Четвертичная структура возникает при соединении нескольких макромолекул, образующих агрегаты. Так, гемоглобин крови человека представляет агрегат из четырех макромолекул.

    Нарушение природной структуры белка называют денатурацией. Она возникает под воздействием высокой температуры, химических веществ, лучистой энергии и др. факторов.

    Роль белка в жизни клеток и организмов:

    строительная (структурная) - белки - строительный материал организма (оболочки, мембраны, органоиды, ткани, органы);

    каталитическая функция - ферменты, ускоряющие реакции в сотни миллионов раз;

    опорно-двигательная функция - белки, входящие в состав костей скелета, сухожилий; движение жгутиковых, инфузорий, сокращение мышц;

    транспортная функция - гемоглобин крови;

    защитная - антитела крови обезвреживают чужеродные вещества;

    энергетическая функция - при расщеплении белков 1 г освобождает 17,6 кДж энергии;

    регуляторная и гормональная - белки входят в состав многих гормонов и принимают участие в регуляции жизненных процессов организма;

    рецепторная - белки осуществляют процесс избирательного узнавания отдельных веществ и их присоединение к молекулам.


    Обмен веществ в клетке. Фотосинтез. Хемосинтез


    Обязательным условием существования любого организма является постоянный приток питательных веществ и постоянное выделение конечных продуктов химических реакций, происходящих в клетках. Питательные вещества используются организмами в качестве источника атомов химических элементов (прежде всего атомов углерода), из которых строятся либо обновляются все структуры. В организм, кроме питательных веществ, поступают также вода, кислород, минеральные соли.

    Поступившие в клетки органические вещества (или синтезированные в ходе фотосинтеза) расщепляются на строительные блоки - мономеры и направляются во все клетки организма. Часть молекул этих веществ расходуется на синтез специфических органических веществ, присущих данному организму. В клетках синтезируются белки, липиды, углеводы, нуклеиновые кислоты и другие вещества, которые выполняют различные функции (строительную, каталитическую, регуляторную, защитную и т.д.).

    Другая часть низкомолекулярных органических соединений, поступивших в клетки, идет на образование АТФ, в молекулах которой заключена энергия, предназначенная непосредственно для выполнения работы. Энергия необходима для синтеза всех специфических веществ организма, поддержания его высокоупорядоченной организации, активного транспорта веществ внутри клеток, из одних клеток в другие, из одной части организма в другую, для передачи нервных импульсов, передвижения организмов, поддержания постоянной температуры тела (у птиц и млекопитающих) и для других целей.

    В ходе превращения веществ в клетках образуются конечные продукты обмена, которые могут быть токсичными для организма и выводятся из него (например, аммиак). Таким образом, все живые организмы постоянно потребляют из окружающей среды определенные вещества, преобразуют их и выделяют в среду конечные продукты.

    Совокупность химических реакций, происходящих в организме, называется обменом веществ или метаболизмом. В зависимости от общей направленности процессов выделяют катаболизм и анаболизм.

    Катаболизм (диссимиляция) - совокупность реакций, приводящих к образованию простых соединений из более сложных. К катаболическим относят, например, реакции гидролиза полимеров до мономеров и расщепление последних до углекислого газа, воды, аммиака, т.е. реакции энергетического обмена, в ходе которого происходит окисление органических веществ и синтез АТФ.

    Анаболизм (ассимиляция) - совокупность реакций синтеза сложных органических веществ из более простых. Сюда можно отнести, например, фиксацию азота и биосинтез белка, синтез углеводов из углекислого газа и воды в ходе фотосинтеза, синтез полисахаридов, липидов, нуклеотидов, ДНК, РНК и других веществ.

    Синтез веществ в клетках живых организмов часто обозначают понятием пластический обмен, а расщепление веществ и их окисление, сопровождающееся синтезом АТФ, - энергетическим обменом. Оба вида обмена составляют основу жизнедеятельности любой клетки, а следовательно, и любого организма и тесно связаны между собой. С одной стороны, все реакции пластического обмена нуждаются в затрате энергии. С другой стороны, для осуществления реакций энергетического обмена необходим постоянный синтез ферментов, так как продолжительность их жизни невелика. Кроме того, вещества, используемые для дыхания, образуются в ходе пластического обмена (например, в процессе фотосинтеза).

    Фотоси́нтез - процесс образования органического вещества из углекислого газа и воды на свету при участии фотосинтетических пигментов (хлорофилл у растений, бактериохлорофилл и бактериородопсин у бактерий). В современной физиологии растений под фотосинтезом чаще понимается фотоавтотрофная функция - совокупность процессов поглощения, превращения и использования энергии квантов света в различных эндэргонических реакциях, в том числе превращения углекислого газа в органические вещества.

    Фотосинтез является основным источником биологической энергии, фотосинтезирующие автотрофы используют её для синтеза органических веществ из неорганических, гетеротрофы существуют за счёт энергии, запасенной автотрофами в виде химических связей, высвобождая её в процессах дыхания и брожения. Энергия, получаемая человечеством при сжигании ископаемого топлива (уголь, нефть, природный газ, торф), также является запасённой в процессе фотосинтеза.

    Фотосинтез является главным входом неорганического углерода в биологический цикл. Весь свободный кислород атмосферы - биогенного происхождения и является побочным продуктом фотосинтеза. Формирование окислительной атмосферы (кислородная катастрофа) полностью изменило состояние земной поверхности, сделало возможным появление дыхания, а в дальнейшем, после образования озонового слоя, позволило жизни выйти на сушу.

    Хемосинтез - способ автотрофного питания, при котором источником энергии для синтеза органических веществ из CO2 служат реакции окисления неорганических соединений. Подобный вариант получения энергии используется только бактериями. Явление хемосинтеза было открыто в 1887 году русским учёным С.Н. Виноградским.

    Необходимо отметить, что выделяющаяся в реакциях окисления неогранических соединений энергия не может быть непосредственно использована в процессах ассимилияции. Сначала эта энергия переводится в энергию макроэнергетических связей АТФ и только затем тратится на синтез органических соединений.

    Хемолитоавтотрофные организмы:

    Железобактерии (Geobacter, Gallionella) окисляют двухвалентное железо до трёхвалентного.

    Серобактерии (Desulfuromonas, Desulfobacter, Beggiatoa) окисляют сероводород до молекулярной серы или до солей серной кислоты.

    Нитрифицирующие бактерии (Nitrobacteraceae, Nitrosomonas, Nitrosococcus) окисляют аммиак, образующийся в процессе гниения органических веществ, до азотистой и азотной кислот, которые, взаимодействуя с почвенными минералами, образуют нитриты и нитраты.

    Тионовые бактерии (Thiobacillus, Acidithiobacillus) способны окислять тиосульфаты, сульфиты, сульфиды и молекулярную серу до серной кислоты (часто с существенным понижением pH раствора), процесс окисления отличается от такового у серобактерий (в частности тем, что тионовые бактерии не откладывают внутриклеточной серы). Некоторые представители тионовых бактерий являются экстремальными ацидофилами (способны выживать и размножаться при понижении pH раствора вплоть до 2), способны выдерживать высокие концентрации тяжёлых металлов и окислять металлическое и двухвалентное железо (Acidithiobacillus ferrooxidans) и выщелачивать тяжёлые металлы из руд.

    Водородные бактерии (Hydrogenophilus) способны окислять молекулярный водород, являются умеренными термофилами (растут при температуре 50 °C)

    Хемосинтезирующие организмы (например, серобактерии) могут жить в океанах на огромной глубине, в тех местах, где из разломов земной коры в воду выходит сероводород. Конечно же, кванты света не могут проникнуть в воду на глубину около 3-4 километров (на такой глубине находится большинство рифтовых зон океана). Таким образом, хемосинтетики - единственные организмы на земле, не зависящие от энергии солнечного света.

    С другой стороны, аммиак, который используется нитрифицирующими бактериями, выделяется в почву при гниении остатков растений или животных. В этом случае жизнедеятельность хемосинтетиков косвенно зависит от солнечного света, так как аммиак образуется при распаде органических соединений, полученных за счет энергии Солнца.

    Роль хемосинтетиков для всех живых существ очень велика, так как они являются непременным звеном природного круговорота важнейших элементов: серы, азота, железа и др. Хемосинтетики важны также в качестве природных потребителей таких ядовитых веществ, как аммиак и сероводород. Огромное значение имеют нитрифицирующие бактерии, которые обогащают почву нитритами и нитратами - в основном именно в форме нитратов растения усваивают азот. Некоторые хемосинтетики (в частности, серобактерии) используются для очистки сточных вод.

    По современным оценкам, биомасса "подземной бьиосферы", которая находится, в частности, под морским дном и включает хемосинтезирующих анаэробных метаноокисляющих архебактерий, может превышать биомассу остальной биосферы.


    Мейоз. Особенности первого и второго деления мейоза. Биологическое значение. Отличие мейоза от митоза


    Понимание того факта, что половые клетки гаплоидны и поэтому должны формироваться с помощью особого механизма клеточного деления, пришло в результате наблюдений, которые к тому же едва ли не впервые навели на мысль, что хромосомы содержат генетическую информацию. В 1883 г. было обнаружено, что ядра яйца и спермия определенного вида червей содержат лишь по две хромосомы, в то время как в оплодотворенном яйце их уже четыре. Хромосомная теория наследственности могла, таким образом, объяснить давний парадокс, состоящий в том, что роль отца и матери в определении признаков потомства часто кажется одинаковой, несмотря на огромную разницу в размерах яйцеклетки и сперматозоида.

    Еще один важный смысл этого открытия состоял в том, что половые клетки должны формироваться в результате ядерного деления особого типа, при котором весь набор хромосом делится точно пополам. Деление такого типа носит название мейоз (слово греческого происхождения, означающее "уменьшение". Название другого вида деления клеток - митоз - происходит от греческого слова, означающего "нить", в основе такого выбора названия лежит нитеподобный вид хромосом при их конденсации во время деления ядра - данный процесс происходит и при митозе, и при мейозе) Поведение хромосом во время мейоза, когда происходит редукция их числа, оказалось более сложным, чем предполагали раньше. Поэтому важнейшие особенности мейотического деления удалось установить только к началу 30-х годов в итоге огромного числа тщательных исследований, объединивших цитологию и генетику.

    При первом делении мейоза каждая дочерняя клетка наследует две копии одного из двух гомологов и поэтому содержит диплоидное количество ДНК.

    Образование гаплоидных ядер гамет происходит в результате второго деления мейоза, при котором хромосомы выстраиваются на экваторе нового веретена и без дальнейшей репликации ДНК сестринские хроматиды отделяются друг от друга, как при обычном митозе, образуя клетки с гаплоидным набором ДНК.

    Таким образом, мейоз состоит из двух клеточных делений, следующих за единственной фазой удвоения хромосом, так что из каждой клетки, вступающей в мейоз, получаются в итоге четыре гаплоидные клетки.

    Иногда процесс мейоза протекает аномально, и гомологи не могут отделиться друг от друга - это явление называется нерасхождение хромосом. Некоторые из образующихся в этом случае гаплоидных клеток получает недостаточное количество хромосом, в то время как другие приобретают их лишние копии. Из подобных гамет формируются неполноценные эмбрионы, большая часть которых погибает.

    В профазе первого деления мейоза во время конъюгации (синапсиса) и разделения хромосом в них происходят сложнейшие морфологические изменения. В соответствии с этими изменениями профаза делится на пять последовательных стадий:

    лептотену;

    зиготену;

    пахитену;

    диплотену;

    диакинез.

    Самое поразительное явление - это инициация тесного сближения хромосом в зиготене, когда между парами сестринских хроматид в каждом биваленте начинает формироваться специализированная структура, называемая синаптонемальным комплексом. Момент полной конъюгации хромосом считают началом пахитены, которая обычно продолжается несколько дней, после разделения хромосом наступает стадия диплотены, когда впервые становятся видны хиазмы.

    Страницы: 1, 2, 3


    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.