МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Получение рекомбинантного аденовируса CELO

    Получение рекомбинантного аденовируса CELO

     














    Получение рекомбинантного аденовируса CELO


    СОДЕРЖАНИЕ


    Введение

    1. Литературный обзор

    1.1 Генетические механизмы наследственности

    1.1.1 Характеристика нуклеиновых кислот

    1.1.2 Нуклеозиды и нуклеотиды

    1.1.3 Первичная структура ДНК

    1.1.4 Вторичная структура ДНК

    1.1.5 Третичная структура (суперспирализация) ДНК

    1.2 Эпигенетические механизмы наследственности

    1.2.1 Контроль активации генов

    1.2.2 Роль хроматина в жизни клетки

    1.2.3 Структура хроматина

    1.2.4 Характеристика «гистонового кода»

    1.3 Современные методы ДНК-технологии

    1.3.1 Содержание генетической инженерии

    1.3.2 Методы исследования структуры и функции гена

    1.3.3 Предмет рекомбинантной ДНК-биотехнологии

    1.3.4 Получение чужеродной ДНК

    1.3.5 Конструирование рекомбинантных ДНК

    1.3.5.1. ДНК-рестриктазы и ДНК-метилазы

    1.3.5.2 ДНК-лигазы

    1.3.6 Векторы

    1.3.7 Введение вектора в клетку

    1.3.8 Обнаружение рекомбинантного клона

    2. Научно-исследовательская часть

    2.1 Характеристика объекта исследования

    2.2 Описание эксперимента

    2.3 Обработка экспериментальных данных

    Заключение


    Введение


    Проблема изучения структуры и функции ДНК, а также возможности ее искусственного изменения и создания организмов с заданными наследственными свойствами - одна из центральных задач биотехнологии.

    Предлагаемая курсовая работа структурно состоит из двух частей: первая содержит литературный обзор наиболее важных положений учения о ДНК и характеризует современное видение проблемы. Вторая часть научно- исследовательская, выполненная автором на базе Государственного НИИ эпидемиологии и микробиологии им. Н.Ф. Гамалеи (г. Москва) с целью получения плазмиды, пригодной для создания рекомбинантных аденовирусов.

    Первая часть выполнена под руководством профессора Н.С. Колобелина (Воронежская государственная биофабрика), вторая часть под руководством канд. биологических наук, старшего научного сотрудника Д.Ю. Логинова (ГУНИИ ЭМ им. Гамалеи, г. Москва).

    25 апреля 1953 г. в журнале «Nature» были напечатаны две заметки. Авторы первой из них, названной «Структура дезоксирибонуклеиновой кислоты», - 25-тилетний американский биохимик Джеймс Уотсон и 37-тилетний английский биофизик Фрэнсис Крик на полутора страницах описали знаменитую двойную спираль и попытались объяснить, как молекуле ДНК удаётся добиться такой точности самовоспроизведения.

    В другой статье ровесник, соотечественник и коллега Крика Морис Уилкинс с соавторами опубликовал высококачественные рентгенограммы молекулы ДНК, которые подтверждали гипотезу её «спиральности».

    Ради справедливости следует отметить, что к открытию структуры ДНК имела прямое отношение Розалинда Франклин, которая в лаборатории М. Уилкинса сделала прекрасные рентгенограммы РНК, которые были переданы Д. Уотсону и Ф. Крику.

    Указанное открытие инициировало целый ряд исследований в области наук о жизни. Начиная с момента открытия, а особенно после расшифровки генома человека научные изыскания дают значительные практические результаты, наиболее перспективные из которых следующие: создание организмов-продуцентов биологически активных веществ; разработка генетических вакцин; развитие генной терапии; применение трансгенных растений и животных для интенсификации сельского хозяйства.


    1. Литературный обзор


    1.1  Генетические механизмы наследственности


    1.1.1 Характеристика нуклеиновых кислот

    Нуклеиновые кислоты - это природные высокомолекулярные органические соединения, обеспечивающие хранение и передачу наследственной информации в живых организмах.

    Нуклеиновые кислоты - высокомолекулярные соединения со строго определённой линейной последовательностью мономеров. Структура ДНК и РНК - способ «записи информации», обеспечивающий формирование в организме двух информационных потоков. Один из потоков осуществляет воспроизведение информации, заключённой в молекулах ДНК. Удвоение молекул ДНК называется «репликацией». В результате этого процесса и последующего деления дочерние клетки наследуют геном родительской клетки, в котором содержится полный набор генов, или инструкции о строении РНК и всех белков организма. Второй поток информации реализуется в процессе жизнедеятельности клетки. В этом случае происходит «считывание», или транскрипция генов в форме полинуклеотидных последовательностей гпРНК и использование их в качестве матриц для синтеза соответствующих белков. В последнем случае осуществляется «перевод» (трансляция) информации, заключённой в тРНК, на «язык» аминокислот. Этот поток информации от ДНК через РНК на белок получил название «центральная догма биологии». Суть новой молекулярной биологии заключается в следующем: всё начинается с ДНК и заканчивается белком. Между ДНК и белком находится РНК, которая является переносчиком генетической информации от ДНК к белкам. Дальше генетическая информация переносится от РНК в особые частицы рибосомы, где реализуется при биосинтезе белков. Механизм характерен для всех живых организмов, за исключением некоторых РНК-содержащих вирусов.

    1.1.2  Нуклеозиды и нуклеотиды

    ДНК и РНК состоят из мономерных единиц - нуклеотидов, поэтому нуклеиновые кислоты называют полинуклеотидами.

    Строение нуклеотидов. Каждый нуклеотид содержит 3 химически различных компонента: гетероциклическое азотистое основание, моносахарид (пентозу) и остаток фосфорной кислоты. В состав нуклеиновых кислот входят азотистые основания двух типов: пуриновые - аденин (А), гуанин (G) и пиримидиновые - цитозин (С), тимин (Т) и урацил (U) ~ см. рисунок 1.1.

    Пентозы в нуклеотидах представлены либо рибозой (в составе РНК), либо дезоксирибозой (в составе ДНК). Чтобы отличить номера атомов в пентозах от нумерации атомов в основаниях, к цифре добавляют штрих (') – 1’, 2', 3', 4' и 5'. Пентозу соединяет с основанием N-гликозидная связь, образованная Сг атомом пентозы (рибозы или дезоксирибозы) и N1-атомом пиримидина или N9- атомом пурина.









    Нуклеозиды - соединения, состоящие из остатков азотистого основания и углевода - рибозы или дезоксирибозы.

    Нуклеотид - это нуклеозид, к которому присоединены молекулы фосфата - см. рисунок 1.2.








    Остов нуклеиновой кислоты имеет одинаковое строение по всей длине молекулы и состоит из чередующихся групп - пентоза - фосфат - пентоза. Уникальность структуры и функциональная индивидуальность молекул ДНК и РНК определяется их первичной структурой - последовательностью азотистых оснований в полинуклеотидной цепи /4/.

     

    1.1.3 Первичная структура ДНК

    Первичная структура ДНК - порядок чередования дезоксирибонуклеозидмонофосфатов в полинуклеотидной цепи. Каждая фосфатная группа в полинуклеотидной цепи, за исключением фосфорного остатка на 5 '-конце молекулы, участвует в образовании двух эфирных связей с участием 3' и 5 '-углеводных атомов двух соседних дезоксирибоз, поэтому связь между мономерами обозначают 3',5' -фосфодиэфирной.

    Концевые нуклеотиды ДНК различают по структуре: на 5'-конце находится фосфатная группа, а на 3'-конце цепи - свободная ОН-группа. Эти концы называют 5' и 3'-концами — см рисунок 1.3.

    Линейная последовательность дезоксирибонуклеотидов в полимерной цепи ДНК обычно сокращенно записывают с помощью однобуквенного кода, например A-G-C - Т- Т- А- С- А от 5'-к З '-концу.














    В каждом мономере нуклеиновой кислоты присутствует остаток фосфорной кислоты. При рН 7 фосфатная группа полностью ионизирована, поэтому in vivo нуклеиновые кислоты существуют в виде полианионов (имеют множественные отрицательный заряд). Остатки пентоз тоже проявляют гидрофильные свойства. Азотистые основания почти нерастворимы в воде, но некоторые атомы пуринового и пиримидинового циклов способны образовывать водородные связи.


    1.1.4 Вторичная структура ДНК

    Молекула ДНК имеет форму спирали, образованную двумя полинуклеотидными цепями, закрученными относительно друг друга и вокруг общей оси. Двойная спираль правозакрученная, полинуклеотидные цепи в ней антипараллельны, т.е. если одна из них ориентирована в направлении 3' —> 5', то вторая в направлении 5'—> 3'. Поэтому на каждом из концов молекулы ДНК расположены 5' -конец одной цепи и 3'-конец другой цепи.

    Двойная спираль стала символом новой, молекулярной биологии. Спираль построена за счёт комплементарных оснований. Именно двухцепочечностью и комплементарностью оснований объясняются биологические функции ДНК. В правовинтовой спирали две водородные связи в паре А - Т и три водородные связи в паре G - С . Естественно, последняя пара прочнее, а первая слабее. Модель Уотсона Крика объяснила правило Чаргаффа - большое основание - пуриновое дополняется маленьким основанием - одиночным гетероциклом пиримидина. То же самое вG-CивA-T. Благодаря этому размеры пар одинаковы по ширине, что и приводит к регулярной двойной спирали. Спираль не деформируется, поскольку то, что её скрепляет внутри, симметрично по отношению друг к другу, хотя и повёрнуто. Плоскости азотистых оснований наклонены по отношению к оси спирали образуя третичную структуру. В местах сгиба двойная спираль имеет изломы, то есть нарушается классическая двойная структура ДНК.


    1.2 Эпигенетические механизмы наследственности


    1.2.1 Контроль активации генов

    Существует мнение, что все свойства клетки и даже многоклеточного организма однозначно определены последовательностью нуклеотидов в ДНК. В настоящее время это положение подвергается критике. Выдвинуты представления об эпигенетических механизмах избирательной экспрессии генов, ведущая роль в которых принадлежит хроматину. Именно на уровне хроматина работают основные механизмы программирования развития живого организма. Эти механизмы базируются на структурно-функциональных особенностях нуклеосомы, гистонов, формирующих нуклеосомную сердцевину, межнуклеосомных взаимодействиях, тонко регулируемых внешними сигналами. На уровне нуклеосомы реализуется «гистоновый код», управляющий сложнейшим каскадом биохимических реакций в клетке. Все вышеуказанные механизмы обеспечивают важнейшее приспособление организмов к изменяющимся условиям внешней и внутренней среды.

    Геном каждой клетки человека составляет около 40 тысяч генов, но все они одновременно не используются. В каждом клеточном типе работает около 20 тысяч генов. Как минимум половина всех работающих генов необходима для поддержания жизнедеятельности любой клетки, другая половина определяет специализацию клетки, т.е. будет ли она принадлежать печени, почкам, селезёнке, другому органу или ткани. Все клетки содержат одинаковую информацию, записанную в молекуле ДНК, но при развитии организма эта информация в тканях или органах считывается избирательно, что и приводит к огромному разнообразию клеток в организме.

    Существует несколько уровней контроля активации генов. Один из них - модификация ДНК, соответствующая тем генам, которые необходимо выключить, т.е. этот ген должен молчать в данном типе клеток. При этом данный признак сохраняется и при удвоении клетки. Однако ДНК сама по себе несёт важнейшую функцию кодирования аминокислотной последовательности белков, и человек не может произвольно её модифицировать, не затронув этой информации и не изменив способность ДНК к удвоению.

    На сегодня единственной изученной модификацией ДНК, которая не нарушает кодирование и копирование, является метилирование цитозина, которое выключает ген и он становится молчащим, и, главное, это свойство закрепляется в наследственности, т.е. в дочерней клетке сохраняется информация о том, что данный ген должен молчать.

    Как же эта модификация влияет на активацию гена - на получение РНК- копии данного гена, служащей в дальнейшем матрицей для синтеза белка?

    Указанная модификация копируется при удвоении ДНК. Возможны два механизма контроля активации гена. Первый - отталкивание белков, активирующих ген, второй - привлечение к метилированной ДНК белков, которые селективно узнают только метилированную ДНК и участвуют в очень плотной её упаковке за счёт изменения структуры хроматина - формы существования генома высших организмов. Именно на уровне хроматина происходит основной контроль активации генов.

    Благодаря расшифровке генома возникли две новые науки: геномика, изучающая геномы, и протеомика, изучающая совокупность клеточных белков. Почти 50 лет после открытия ДНК господствовал постулат: один ген синтезирует один белок. После расшифровки генома появилась новая догма: один ген - много белков. Установлено, что гены у высших организмов состоят из кодирующих и некодирующих участков. В результате комбинаторики из одного гена путём соединения кодирующих участков можно получить очень много белков. Если у человека около 40 тысячи генов (по геномике), то по протеомике можно получить минимально более 100 тысяч белков. Это только на уровне первичной структуры, фактическая ситуация ещё сложнее, потому что белки подвергаются модификациям, на них «навешивается» огромное количество разных групп, что приводит к колоссальному разнообразию. Если геном постоянен, то протеом очень вариабелен. Уотсон очень много сделал для расшифровки генома человека, которая закончилась в 2003 году /3/.

     

    1.2.2  Роль хроматина в жизни клетки

    Хроматин - нуклеопротеид, комплекс белков с ДНК и РНК в ядрах клеток, обеспечивает упаковку сравнительно длинного фрагмента ДНК в значительно меньшее по размерам ядро. Хроматин - чрезвычайно сложный и динамичный комплекс и в живых клетках высших организмов он служит носителем генетической информации.

    Избирательное и комбинаторное извлечение информации из ДНК, происходящее на уровне хроматина, приводят к огромному разнообразию фенотипического проявления наследственного материала. Неудивительно поэтому, что при почти 80 %-ной схожести геномов человека и мыши - эти два организма весьма существенно отличаются друг от друга.

    На уровне хроматина, а не ДНК наиболее эффективно работают многие ферменты, участвующие в избирательном считывании генетической информации, её удвоении при делении клетки и исправлении возникающих при этом ошибок

     

    1.2.3  Структура хроматина

    Универсальные компоненты хроматина - белки гистоны.

    Гистоны - это небольшие по молекулярной массе белки с высоким содержанием положительно заряженных аминокислотных остатков - лизинов и аргининов, локализованных преимущественно в N- и С-концевых неструктурированных областях белка, так называемых «хвостах», которые играют главную роль в эпигенетических механизмах. В центральных, наиболее консервативных участках гистонов преобладают гидрофобные аминокислотные остатки, необходимые для белок-белкового узнавания. Существуют пять типов гистонов: HI, Н2А, Н2В, НЗ, Н4. Последовательность расположения гистонов в нуклеосоме одинакова для организмов-эукариотов всех царств живой природы: грибов, растений, животных.

    Рассмотрим строение нуклеосомы. Нуклеосома состоит из восьми молекул комплекса гистонов: по два гистона Н2А и Н2В с высоким содержанием лизина, по два богатых аргинином гистона НЗ и Н4. Этот гистоновый октамер называется «кор» (от лат. cor - сердцевина) На кор навивается ДНК в виде левозакрученной суперспирали с шагом 28 А, содержащей 80 пар нуклеотидов на виток. Всего на кор в нуклеосоме навивается 1,75 витка или 146 пар нуклеотидов. Описанная нуклеосома носит название «минимальной» или «кор-нуклеосомы». Если в состав нуклеосомы входит гистон HI, который связывается с межнуклеосомной ДНК, или линкером, то такую нуклеосому называют полной; на неё навивается 2-2,5 витка ДНК (160-200 пар нуклеотидов).

    В основе организации нуклеосомы лежит уровень многоуровневого узнавания. На первом уровне гистоны попарно узнают друг друга. Молекула каждого гистона состоит из центрального структурированного трёхспирального домена (одного длинного и двух коротких альфа-спиральных участков, соединённых петельным сегментом, так называемая гистонная укладка) и двух неструктурированных N и С-«хвостов». Спиральные домены гистонов взаимодействуют друг с другом («рукопожатие»), в результате чего образуются гетеродимеры НЗ - Н4 и Н2А - Н2В. Эти димеры образуют тетрамер НЗ - Н4 и два димера Н2А - Н2В, формирующие гистоновый октамер, который имеет клинообразную форму, обеспечивающую левое закручивание спирали ДНК вокруг себя. На его поверхности, обращённой к ДНК, формируются белковые структуры {мотивы), которые можно разделить на три основных типа.

    Мотивы первого типа образованы спаренными петельными сегментами гистоновых димеров (бета-мосты).

    Мотивы второго представляют собой спаренные N-концевые сегменты первых спиральных доменов каждого гистона в гетеродимерах. К третьему типу относят два мотива, которые формируются двумя дополнительными альфа спиральными участками гистона НЗ, расположенными по концам суперспирали

    ДНК, где ДНК входит и покидает иуклеосому. Суммарное число всех мотивов равно 14, что соответствует числу витков двойной спирали ДНК, накрученной вокруг октамера.

    Все эти мотивы содержат положительно заряженные аминокислоты (в основном аргинины), что обеспечивает электростатический контакт октамера с отрицательно заряженными фосфатами сахарного остова ДНК. При этом 14 малых бороздок ДНК втягивают в себя 14 аргинин содержащих мотивов гистонового октамера, расположенных на поверхности гистонового кора и обращенных к ДНК. Это приводит к жёсткому фиксированию ДНК, которое в малой степени зависит от её нуклеотидной последовательности, что и обеспечивает универсальность компактизации ДНК на нуклеосомах. Консервативная глобулярная часть гистонов участвует в формировании гистонового октамера и фиксировании на нём молекулы ДНК. Так обеспечивается первый уровень компактизации. При этом ДНК оказывается на поверхности кора и остаётся доступной для взаимодействия с другими белками. В последние годы изучалась роль гистоновых хвостов.

    Согласно рентгеноструктурному анализу нуклеосом, суперспираль ДНК в нуклеосоме закручена так, что обеспечивается выход «хвостов» гистонов на поверхность нуклеосомы. «Хвост» гистона НЗ простирается далеко от места выхода на

    поверхность нуклеосомы и фиксируется межнуклеосомными контактами. «Хвост» гистона Н4 имеет много контактов с поверхностью димера Н2А - Н2В соседней нуклеосомы. «Хвосты» гистонов выходят на поверхность хроматиновой фибриллы, участвуют в межнуклеосомном взаимодействии, очень подвижны и подвергаются многочисленным модификациям: ацетилированию, фосфорилированию, метилированию, убиквитинилированию и АДФ-рибозилированию. Эти модификации приводят к изменению заряда, гидрофобности и других свойств поверхности белковых глобул. В результате формируется сложная матрица для узнавания её другими регуляторными белками и внешними сигналами. Поскольку концевые домены гистонов участвуют и в межнуклеосомном взаимодействии, вышеперечисленные модификации влияют и на характер упаковки хроматиновой фибриллы, разрыхляя или, наоборот, уплотняя её, что, в свою очередь облегчает или затрудняет доступ к ДНК многочисленным регуляторным факторам.

    Эти свойства «хвостов» гистонов в структуре нуклеосомы имеют большое значение для расшифровки и понимания механизмов функционирования хроматина, его поведения при активации генов, репрессии их и многих других процессов, связанных с доступом к ДНК /4/.

    Страницы: 1, 2, 3


    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.