МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Реферат: Распределение температуры по сечению балки

    Реферат: Распределение температуры по сечению балки

    Министерство образования Российской Федерации

    Архангельский государственный технический университет

    Факультет промышленной энергетики ПТЭIII-2

    Кафедра теплотехники


    Реферат

    Распределение температуры по сечению балки.

    Руководитель работы: С.И. Осташев

    Студент Шафоростов А.В.

    Архангельск

    2009


    Содержание

    Задание

    Расчет распределения температуры по сечению балки явным методом

    Расчет распределения температуры по сечению балки неявным методом

    Список литературы


    Задание

    Необходимо нагреть груз прямоугольного сечения. Теплота с помощью нагревателя подводится с одной из сторон. Нагреватель должен работать до тех пор, пока температура противоположной стороны не достигнет заданного значения Tk. Первоначально груз имел температуру Tн. Остальные 3 поверхности окружены воздухом с температурой T∞. Коэффициент теплоотдачи от этих поверхностей α. Температура нагревания TS.

    Сколько времени должен работать нагреватель, чтобы минимальная температура на противоположной стороне бруса составила Tк. Расчёты выполнить явным и неявным методом.

    распределение температура сечение балка


    Расчет распределения температуры по сечению балки явным методом

    Методика численного решения задач нестационарной теплопроводности аналогична рассмотренной методике решения задач стационарной теплопроводности. При решении нестационарных задач для каждого узла необходимо дополнительно учесть аккумулирование энергии - в материале, величина которой определяется теплофизическими свойствами материала. Принцип метода заключается в определении температуры в узле в момент времени τ+Δτ, зная температуру в этом узле и в соседних узлах в предыдущий момент времени τ, поэтому этот метод и называется явным.

    Чтобы решить задачу нестационарной теплопроводности численным методом необходимо знать начальное распределение температуры в твердом теле (временные граничные условия). Обычно в качестве такого условия тело рассматривают изотермичным, а температуры во всех узлах - равными начальной температуре тела. Затем, после расчета всех температур в момент времени Δτ процесс повторяют и рассчитывают температур в момент времени 2Δτ. Эту процедуру повторяют до тех пор, пока не будет достигнут момент времени, для которого требуется знать распределение температуры.

    Следует также иметь в виду, что для выделения единственности решения дифференциального уравнения в частных производных вводят дополнительные условия, при этом:

    1. для избежания противоречивости в условиях постановки задачи убеждаются в решении данной задачи при рассматриваемых условиях путем доказательства теоремы существования решения.

    2. для исключения получения бесчисленного множества решений также убеждаются в единственности решения при рассматриваемых условиях путем доказательства теоремы о единственности решения.

    3. для исключения противоречивости решения проверяют задачу на устойчивость. Устойчивой называется задача математической физики, в которой при достаточно малом изменении аргумента наблюдается сколь угодно малое изменение решения. Из изложенного следует, что в данном методе выбор расстояния между узлами Δx и временного интервала Δτ не является произвольным. В противном случае решение не будет устойчивым, а следовательно можно получить результаты, противоречащие основным законам термодинамики.

    Явные разностные уравнения баланса и критерии устойчивости для десяти узлов поверхности балки имеют следующий вид:

    где Bi=α·Δx/λ - число Био, где a - коэффициент теплоотдачи от среды к омываемой поверхности, Вт/ (м К);

    Δх - шаг по пространству, м;

    λ - коэффициент теплопроводности материала стенки, Вт/ (м-К);

    Принимаю Δх=0,05 м (см. рис.1), тогда критерий: Био Bi=84·0,05/69,2=0,06069. Принимаю Δτ=5,248с, тогда критерий Фурье: Fo=69,2·5,248/ (0,052·465·7860) =0,03974. Условие устойчивости, удовлетворяющее всем десяти уравнениям: Fo (l+Bi) <0,25 Проверяем условие устойчивости: 0,03974· (1+0,06069) = 0,04216<0,25

    Условие выполняется, решаем уравнения.

    Распределение температуры по сечению балки.

    Время Температура, град С, в узле
      1 2 3 4 5 6 7 8 9 10
    0 54 54 54 54 54 54 54 54 54 54
    5,248 72,367 72,521 72,521 72,521 72,367 53,691 53,846 53,846 53,846 53,691
    10,5 89,185 89,558 89,564 89,558 89,185 54,882 55,17 55,177 55,17 54,882
    15,74 104,65 105,28 105,3 105,28 104,65 57,315 57,733 57,749 57,733 57,315
    20,99 118,93 119,85 119,9 119,85 118,93 60,77 61,324 61,356 61,324 60,77
    26,24 132,16 133,4 133,47 133,4 132,16 65,063 65,766 65,817 65,766 65,063
    31,49 144,48 146,03 146,14 146,03 144,48 70,037 70,905 70,979 70,905 70,037
    36,74 155,98 157,85 158 157,85 155,98 75,56 76,609 76,711 76,609 75,56
    41,98 166,75 168,94 169,14 168,94 166,75 81,519 82,766 82,901 82,766 81,519
    47,23 176,88 179,39 179,65 179,39 176,88 87,819 89,279 89,452 89,279 87,819
    52,48 186,43 189,26 189,57 189,26 186,43 94,379 96,066 96,282 96,066 94,379
    57,73 195,46 198,6 198,97 198,6 195,46 101,13 103,06 103,32 103,06 101,13
    62,98 204,02 207,47 207,9 207,47 204,02 108,02 110,2 110,51 110,2 108,02
    68,22 212,16 215,9 216,4 215,9 212,16 114,99 117,43 117,8 117,43 114,99
    73,47 219,91 223,95 224,51 223,95 219,91 122,01 124,71 125,15 124,71 122,01
    78,72 227,32 231,63 232,26 231,63 227,32 129,05 132,02 132,51 132,02 129,05
    83,97 234,4 238,99 239,68 238,99 234,4 136,06 139,31 139,87 139,31 136,06
    89,22 241,18 246,04 246,8 246,04 241,18 143,03 146,56 147, 19 146,56 143,03
    94,46 247,69 252,81 253,64 252,81 247,69 149,95 153,75 154,45 153,75 149,95
    99,71 253,95 259,32 260,22 259,32 253,95 156,79 160,86 161,64 160,86 156,79
    105 259,97 265,59 266,55 265,59 259,97 163,53 167,89 168,74 167,89 163,53
    110,2 265,77 271,63 272,66 271,63 265,77 170,18 174,81 175,74 174,81 170,18
    115,5 271,36 277,47 278,56 277,47 271,36 176,72 181,62 182,63 181,62 176,72
    120,7 276,77 283,1 284,26 283,1 276,77 183,14 188,32 189,4 188,32 183,14

    Страницы: 1, 2


    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.