МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Реферат: Начало и конец Вселенной

    Вот так обстоит дело. Пока с уверенностью можно утверждать лишь то, что возраст Вселенной составля­ет от 10 до 20 миллиардов лет.

        Это означает, что около 10-20 миллиардов лет назад произошел колоссальный взрыв, в результате которого родилась наша Вселенная.

         Сейчас галактики разбегаются от нас во всех направлениях, а если представить себе, что мы движемся во времени вспять, то нам покажется, что Вселенная сжимается. Те­перь галактики расположены так далеко друг от друга, что для их сближения потре­бовалось бы около 16 миллиардов лет. Представим себе, что мы бессмертные существа, путешествующие против течения времени; для нас миллиард лет – одна минута. Мы увидим вспыхивающие и гаснущие в нашей Галактике звезды; они образуются из межз­вездных газа и пыли, проходят свой жизненный цикл и либо взрываются, разбрасывая вещество в пространство, либо медленно угасают. Издала все это похоже на рас­цвеченную огнями новогоднюю елку. Двигаясь дальше назад во времени, мы увидим, что светимость некоторых галактик немного возрастает, но постепенно все они тус­кнеют из-за того, что в них становится все больше газа и все меньше звезд. Но вот погасла последняя звезда, и не осталось ничего кроме гигантской бурлящей массы газа. Каждая из огромных спиралей газа растет в размерах, постепенно приближаясь  к другим спиралям, а потом, когда Вселенной становится лишь несколько сот миллионов лет от роду, эти колоссальные газовые сгустки рассеиваются и все пространство ока­зывается заполненным очень разреженным, но весьма однородным газом. Тем не менее, в нем все же есть заметные флуктуации плотности. Астрономы пока еще точно не знают, отчего они образовались, но скорее всего это было вызвано своеобразной ударной волной, пронесшейся через несколько секунд (или минут) после взрыва.

        В возрасте около 10 миллионов лет Вселенная имела температуру, которую мы сейчас называем комнатной. Может показаться, что она в то время была абсолютно пуста и черна, но на самом деле там было сильно разреженной вещество будущих галактик.

        Чем ближе к моменту рождения Вселенной, тем больше разогревается газ; за несколько миллионов лет до этого события появляется слабое свечение, которое постепенно приобретает темно-красный оттенок, - температура на этом этапе со­ставляет примерно 1000 К. Вселенная производит жутковатое впечатление, но все еще прозрачна и однородна; постепенно желтым.  И вдруг при температуре 3000 К. про­исходит нечто странное – до этого момента Вселенная была прозрачной (правда, смотреть в ней было не на что, но свет сквозь нее проходил), а теперь все заволок ослепительно сияющий желтый туман, через который ничего не видно.

         Двигаясь еще дальше назад во времени, мы увидим, что Вселенная состоит почти целиком из плотного излучения, в которое кое-где вкраплены ядра атомов. По мере роста температуры яркость тумана все возрастает. Повсюду появляются легкие частицы и их античастицы – Вселенная на этом этапе представляет собой смесь излучения, эле­ктронов, нейтронов и их античастиц. Наконец, при еще более высоких температурах, появляются тяжелые частицы их античастицы, а также черные дыры. Вселенная пре­вращается в невообразимую кашу – частицы и излучение врезаются друг в друга с колоссальной силой. Теперь она очень мала, размером с надувной мяч, а еще через долю секунды может превратиться в сингулярность. Но до того перед нами закроется “занавес”. Мы не в состоянии сказать, что в действительности произойдет в последнюю долю секунды в последнюю долю секунды, потому что не в силах заглянуть за “зана­вес”, о котором я говорил, занавес нашего неведения. При таких условиях отказывает не только общая теория относительности, но, возможно, и квантовая теория, поэтому мы и не можем сказать наверняка, появляется ли сингулярность.

    Абсолютная сингулярность.

        Вселенская сингулярность или состояние близкое к ней, о чёрной дыре. В отличие от черный дыр, которые имеют массу, равную массе крупной звезды; теперь же речь идет о сингулярности, содержащей всю массу Вселенной. Но помимо этого есть еще одно фундаментальное отличие. В случае сколлапсировавшей звезды был горизонт событий, в центре которого помещалась сингулярность; иными словами, черная дыра находилась где-то в нашей Вселенной. В случае вселенской  черной дыры сразу же возникают трудности –  несли вся наша Вселенная сколлапсировала в черную дыру, значит все вещество и пространство исчезли в сингулярности, то есть не останется ничего, в чем можно было бы находится – не будет Вселенной.

         Более того, в  случае вселенской черной дыры (может быть, вернее будет сказать, квазичерной дыры) нельзя быть уверенным в том, что имеешь дело с истинной сингулярностью.

        Но даже если сингулярности не было, остается вопрос, что было раньше, намного раньше. Один из ответов на него может выглядеть так: раньше была другая Вселенная, которая сколлапсировала, превратившись или почти превратившись в сингулярность, из которой затем возникла наша Вселенная. Возможно, что такие коллапсы и возрождения происходили неоднократно. Такую модель называют осциллирующей моделью Вселенной.

         Посмотрим теперь, когда отказывает общая теория относительности; это происходит через 10(-43) с после начала отсчета времени (интервал, называемый план-ковским временем). Это как раз тот момент, когда задер­гивается «занавес»; после него во Вселенной царит пол­ный хаос, но с помощью квантовой теории мы можем хотя бы грубо представить себе, что там происходило.

         Ранее уже упоминалось о точке зрения Стивена Хокинга, согласно которой на самой ранней стадии развития Вселенной образовывались маленькие чер­ные дыры; он также дока­зал, что эти черные «дыроч­ки» испаряются примерно через 10(-43) с. Отсюда вытекает, что по истечении этого интервала времени во Вселенной существовала странная «пена» из чер­ных дыр. Сотрудник Чикагского университета Дэвид Шрамм так выразился по этому поводу: «...Мы прихо­дим к представлению о пространстве-времени как о пене из черных мини-дыр, которые внезапно появля­ются... ре комбинируют и образуются заново». В этот момент пространство и время были совершенно не похожи на теперешние — они не обладали непрерыв­ностью. Эта пена представляла собой по сути дела смесь пространства, времени, черных дыр и «ничего», не связанных друг с другом. О таком состоянии мы знаем очень мало.

         Температура в момент, о котором идет речь, со­ставляла примерно 10(32) К — вполне достаточно для образования частиц. Частицы могут образовываться Посмотрим теперь, когда отказывает общая теория относительности; это происходит через 10(-43) с после начала отсчета времени (интервал, называемый план-ковским временем). Это как раз тот момент, когда задер­гивается «занавес»; после него во Вселенной царит пол­ный хаос, но с помощью квантовой теории мы можем хотя бы грубо представить себе, что там происходило. Ранее уже упоминалось о точке зрения Стивена Хокинга, согласно которой на самой ранней стадии развития Все­ленной образовывались маленькие чер­ные дыры; он также доказал, что эти черные «дыроч­ки» испаряются примерно через 10(-43) с. Отсюда вытекает, что по истечении этого интервала времени во Вселенной существовала странная «пена» из чер­ных дыр. Сотрудник Чикагского университета Дэвид Шрамм так выразился по этому поводу: «...Мы прихо­дим к представлению о пространстве-времени как о пене из черных мини-дыр, которые внезапно появля­ются... ре комбинируют и образуются заново». В этот момент пространство и время были совершенно не похожи на теперешние — они не обладали непрерыв­ностью. Эта пена представляла собой по сути дела смесь пространства, времени, черных дыр и «ничего», не связанных друг с другом. О таком состоянии мы знаем очень мало.

        Температура в момент, о котором идет речь, со­ставляла примерно 10(32) К — вполне достаточно для образования частиц. Частицы могут образовываться двумя способами. В первом случае при достаточно высокой энергии (или, что-то же самое, при высокой температуре) рождаются электроны и их античасти­цы — это так называемое рождение пар. Например, при температуре 6 миллиардов градусов столкнове­ние двух фотонов может дать пару электрон — пози­трон. При еще более высоких температурах могут рождаться пары протон — антипротон и так далее; в целом, чем тяжелее частица, тем большая энергия требуется для ее рождения, т. е. тем выше должна быть температура.

    Упрощенное изображение эпох Вселенной, начиная с Большого

    Взрыва

    Раньше мы видели, что есть и второй способ обра­зования пар частиц — они могут появляться сразу же за горизонтом событий черных мини-дыр под дейст­вием приливных сил. Мы также говорили о том, что при испарении черных мини-дыр рождались ливни частиц, а поскольку вселенская черная дыра подобна мини-дыре, там происходило то же самое.

    Итак, есть два способа рождения частиц. Какой же из них следует считать более важным? По мнению ас-1трономов, основная масса частиц образовалась за счет наличия высоких энергий, так как только на самом  раннем этапе приливные силы были настолько велики, чтобы приводить к рождению частиц в значительных количествах. Однако многое еще здесь неясно, и впоследствии может оказаться, что второй метод также играет существенную роль.

    Краткий период времени, следующий непосредственно за моментом 10(-43) с, обычно называют квантовой эпохой.

        В эту эпоху все четыре фундаменталь­ных взаимодействия были объединены. Вскоре после момента 10(-43) с единое поле распалось, и от него отделилась первая из четырех сил. Позднее по очереди отделились другие силы, которые изменялись по  величине. В конце концов получились четыре знакомых нам взаимодействия.

    Раздувание.

    Одна из трудностей, на которую наталкивается традиционная теория Большого взрыва, — необходи­мость объяснить, откуда берется колоссальное коли­чество энергии, требующееся для рождения частиц. Не так давно внимание ученых привлекла видоизмененная теория Большого взрыва, которая предлагает I ответ на этот вопрос. Она носит название теории раздувания и была предложена в 1980 году сотрудником Массачусетского технологического института Аланом Гутом. Основное отличие теории раздувания от тра­диционной теории Большого взрыва заключается в описании периода с 10(-35) до 10(-32) с. По теории Гута примерно через 10(-35) с Вселенная переходит в состояние «псевдовакуума», при котором ее энергия исключительно велика. Из-за этого происходит чрез­вычайно быстрое расширение, гораздо более быстрое, чем по теории Большого взрыва (оно называется раз­дуванием). Через 10(-35) с после образования Все­ленная не содержала ничего кроме черных мини-дыр и «обрывков» пространства, поэтому при резком раз­дувании образовалась не одна вселенная, а множест­во, причем некоторые, возможно, были вложены друг в друга. Каждый из участков пены превратился в от­дельную вселенную, и мы живем в одной из них. От­сюда следует, что может существовать много других вселенных, недоступных для нашего наблюдения.

    Хотя в этой теории удается обойти ряд трудностей традиционной теории Большого взрыва, она и сама не свободна от недостатков. Например, трудно объяс­нить, почему, начавшись, раздувание в конце концов прекращается. От этого недостатка удалось освобо­диться в новом варианте теории раздувания, появив­шемся в 1981 году, но в нем тоже есть свои трудности.

    Эпоха адронов.

         Через 10(-23) с Вселенная вступила в эпоху адронов, или тяжелых частиц. Поскольку адроны участву­ют в сильных взаимодействиях, эту эпоху можно на­звать эпохой сильных взаимодействий. Температура была достаточно высока для того, чтобы образовыва­лись пары адронов: мезоны, протоны, нейтроны и т. п., а также их античастицы. Однако на заре этой эпохи температура была слишком высока, и тяжелые части­цы не могли существовать в обычном виде; они при­сутствовали в виде своих составляющих — кварков. На данном этапе Вселенная почти полностью состоя­ла из кварков и антикварков. Сейчас свободные квар­ки не наблюдаются. Из современных теорий следует, что они попали в «мешки» и не могут их покинуть. Однако некоторые ученые считают, что где-то еще должны остаться кварки, дошедшие до нас из тех дале­ких времен. Возможно, они столь же многочисленны, как атомы золота, но пока обнаружить их не удалось. В соответствии с этой теорией, после того как тем­пература достаточно упала (примерно через 10(-6) с), кварки быстро собрались в «мешки». Такой процесс носит название кваркадронного перехода. В то время Вселенная состояла в основном из мезонов, нейтро­нов, протонов, их античастиц и фотонов; кроме того, могли присутствовать более тяжелые частицы и не­много черных дыр. При этом на каждую частицу при­ходилась античастица, они при соударении аннигили­ровали, превращаясь в один или несколько фотонов. Фотоны же, в свою очередь, могли образовывать пары частиц, в результате чего Вселенная, пока пары рож­дались и аннигилировали примерно с одинаковой ско­ростью, пребывала в равновесном состоянии. Однако по мере расширения температура падала и рождалось все меньше и меньше пар тяжелых частиц. Постепенно число аннигиляции превысило число рождений, и в результате почти все тяжелые частицы исчезли. Если бы число частиц и античастиц было в точности одинаково, то они исчезли бы полностью. На самом деле это не так, и свидетельство тому — наше суще­ствование.

    Наконец температура упала настолько, что пары тяжелых частиц уже не могли рождаться. Энергии хватало лишь для образования легких частиц (лептонов). Вселенная вступила в эпоху, когда в ней содер­жались в основном лептоны и их античастицы.

    Эпоха лептонов.

    Примерно через сотую долю секунды после Боль­шого взрыва, когда температура упала до 100 милли­ардов градусов, Вселенная вступила в эпоху лептонов. Теперь она походила на густой суп из излучения (фотонов) и лептонов (в основном электронов, по­зитронов, нейтрино и антинейтрино). Тогда также на­блюдалось тепловое равновесие, при котором электрон-позитронные пары рождались и аннигилировали примерно с одинаковой скоростью. Но кроме того, во Вселенной находились оставшиеся от эпохи адронов в небольших количествах протоны и нейтроны — примерно по одному на миллиард фотонов. Однако в свободном состоянии нейтроны через 13 мин распа­даются на протоны и электроны, т. е. происходил еще один важный процесс — распад нейтронов. Правда, температура в начале этой эпохи была еще достаточ­но высока для рождения нейтронов при соударении электронов с протонами, поэтому равновесие сохра­нялось. А вот когда температура упала до 30 миллиар­дов градусов, электронам уже не хватало энергии для образования нейтронов, поэтому они распадались в больших количествах.

    Еще одно важное событие эпохи лептонов — разде­ление и освобождение нейтрино. Нейтрино и анти­нейтрино образуются в реакциях с участием протонов и нейтронов. Когда температура была достаточно вы­сока, все эти частицы были связаны между собой, а при понижении температуры ниже определенного критического значения произошло их разделение, и все частицы свободно разлетелись в пространство. По мере расширения Вселенной их температура па­дала до тех пор, пока не достигла значения около 2 К. До настоящего времени обнаружить эти частицы не удалось.

    Эпоха излучения.

    Через несколько секунд после Большего взрыва, когда температура составляла около 10 миллиардов градусов, Вселенная вступила в эпоху излучения. В начале этой эпохи было еще довольно много лепто­нов, но при понижении температуры до 3 миллиардов градусов (порогового значения для рождения пар леп­тонов) они быстро исчезли, испустив множество фо­тонов. В то время Вселенная состояла почти полно­стью из фотонов.

    В эпоху излучения произошло событие исключи­тельной важности — в результате синтеза образо­валось первое ядро. Это как раз то событие, которое пытался объяснить Гамов; о нем речь шла раньше. Примерно через три минуты после начала отсчета времени, при температуре около миллиарда градусов, Вселенная уже достаточно остыла для того, чтобы столкнувшиеся протон и нейтрон соединились, обра­зовав ядро дейтерия (более тяжелой разновидности водорода). При соударении двух ядер дейтерия об­разовывались ядра гелия. Так за очень короткое время, примерно за 200 мин, около 25 % вещества Вселенной превратилось в гелий. Помимо того, пре­вращение водорода в гелий происходит в недрах звезд, но там образуется лишь около 1 % всей массы гелия. В эту эпоху возникли также другие элементы: немного трития и лития, но более тяжелые ядра обра­зоваться не могли. Поскольку все, о чем здесь шла речь, естественно, относится к области теории, чита­тель вправе усомниться: а так ли это в действительно­сти? Видимо, да, ведь теория прекрасно согласуется с наблюдениями, поэтому ей можно доверять. Напри­мер, согласно этой теории гелий должен составлять около 25 % вещества во Вселенной, что подтверждает­ся наблюдением.

    Фоновое космическое излучение.

    Вселенная продолжала расширяться и охлаждаться в течение нескольких тысяч лет. Тогда она состояла в основном из излучения с примесью некоторых частиц (нейтронов, протонов, электронов, нейтрино и ядер простых атомов). Это была довольно тоскливая Все­ленная, непрозрачная из-за густого светящегося тума­на, и в ней почти ничего не происходило. Непрозрач­ность вызывалась равновесием между фотонами и веществом; при этом фотоны были как бы привязаны к веществу. Наконец, при температуре 3000 К в ре­зультате объединения электронов и протонов образо­вались атомы водорода, так что фотоны смогли ото­рваться от вещества. Как раньше нейтрино, так теперь фотоны отделились и унеслись в пространство.

    Наверное, это напоминало чудо — густой туман внезапно рассеялся и Вселенная стала прозрачной, хотя и ярко красной, так как температура излучения была еще довольно высока (чуть ниже 3000 К). Но по­степенно она падала — сначала до 1000 К, затем до 100 К и наконец достигла нынешнего значения 3 К.

    Существование такого фонового излучения пред­сказал в 1948 году Г. Гамов, но в своих рассуждениях он допустил массу ошибок, как численных, так и смысловых. Несколько лет спустя его студент испра­вил эти ошибки и рассчитал, что температура фо­нового излучения сейчас должна быть около 5 К. Считалось, однако, что это излучение обнаружить не удастся, в частности, из-за света звезд. Вот почему прошло 17 лет, прежде чем фоновое излучение было зарегистрировано.

    В начале 60-х годов компания «Белл телефон» по­строила в Холмделе, шт. Нью-Джерси, специальный радиотелескоп для приема микроволнового излуче­ния. Он использовался для обеспечения связи со спутником «Телстар». Двое работавших на нем уче­ных, Арно Пензиас и Роберт Уилсон, решили также исследовать с его помощью микроволновое излучение нашей Галактики.

    Однако до начала исследований им нужно было обнаружить и устранить все возможные помехи как от самого телескопа, так и от окружающих наземных источников. Ученые решили поработать на волне 7,35 см, но вскоре обнаружили, что на ней постоянно присутствует какой-то шум. Несмотря на все усилия, избавиться от него не удавалось, хотя вначале ис­следователям казалось, что это не составит труда. Шум так мешал работе, что Пензиас и Уилсон решили проверить, не является ли его источником само небо, Как ни странно, но оказалось, что это так. Куда бы ученые не наводили телескоп, шум не исчезал.

    Страницы: 1, 2, 3, 4


    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.