МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Курсовая работа: Анализ методики проведения санитарно-экологического состояния объекта

    2.2 Строение атома

    Главным объектом исследования ученых был сам атом, вернее его строение. Мы знаем теперь, что атом похож на Солнечную систему в миниатюре: вокруг крошечного ядра движутся по орбитам «планеты»-электроны. Размеры ядра в сто тысяч раз меньше размеров самого атома, но плотность его очень велика, поскольку масса ядра почти равна массе всего атома. Ядро, как правило, состоит из нескольких более мелких частиц, которые плотно сцеплены друг с другом (рисунок № 5, приложение Б)

    Некоторые из этих частиц имеют положительный заряд и называются протонами. Число протонов в ядре и определяет, к какому химическому элементу относится данный атом: ядро атома водорода содержит всего один протон, атома кислорода-8, урана-92. В каждом атоме число электронов в точности равно числу протонов в ядре; каждый электрон несет отрицательный заряд, равный по абсолютной величине заряду протона, так что в целом атом нейтрален.

    В ядре, как правило, присутствуют и частицы другого типа, называемые нейтронами, поскольку они электрически нейтральны. Ядра атомов одного и того же элемента всегда содержат одно и то же число протонов, но число нейтронов в них может быть разным. Атомы, имеющие ядра с одинаковым числом протонов, но различающиеся по числу нейтронов, относятся к разным разновидностям одного и того же химического элемента, называемым изотопами данного элемента. Чтобы отличить их друг от друга, к символу элемента приписывают число, равное сумме всех частиц в ядре данного изотопа. Так, уран-238 содержит 92 протона и 146 нейтронов; в уране-235 тоже 92 протона, но 143 нейтрона. Ядра всех изотопов химических элементов образуют группу «нуклидов».

    Некоторые нуклиды стабильны, т.е. в отсутствие внешнего воздействия никогда не претерпевают никаких превращений.

    Большинство же нуклидов нестабильны, они все время превращаются в другие нуклиды.

    При каждом таком акте распада высвобождается энергия, которая и передается дальше в виде излучения. Можно сказать (хотя это и не совсем строго), что испускание ядром частицы, состоящей из двух протонов и двух нейтронов – этоальфа-излучение; испускание электрона, как в случае распада тория-234,-это бета-излучение. Часто нестабильный нуклид оказывается настолько возбужденным, что испускание частицы не приводит к полному снятию возбуждения; тогда он выбрасывает порцию чистой энергии, называемую гамма-излучением (гамма-квантом). Как и в случае рентгеновских лучей (во многом подобных гамма-излучению), при этом не происходит испускания каких-либо частиц.

    Весь процесс самопроизвольного распада нестабильного нуклида называется радиоактивным распадом, а сам такой нуклид-радионуклидом. Но хотя все радионуклиды нестабильны, одни из них более нестабильны, чем другие. Например, протактиний-234 распадается почти моментально, а уран-238-очень медленно. Половина всех атомов протактиния в каком-либо радиоактивном источнике распадается за время, чуть большее минуты, в то же время половина всех атомов урана-238 превратится в торий-234 за четыре с половиной миллиарда лет. Время, за которое распадается в среднем половина всех радионуклидов данного типа в любом радиоактивном источнике, называется периодом полураспада соответствующего изотопа. Этот процесс продолжается непрерывно. За время, равное одному периоду полураспада, останутся неизменными каждые 50 атомов из 100, за следующий аналогичный промежуток времени 25 из них распадутся, и так далее по экспоненциальному закону. Число распадов в секунду в радиоактивном образце называется его активностью. Единицу измерения активности (в системе СИ) назвали беккерелем (Бк) в честь ученого, открывшего явление радиоактивности; один беккерель равен одному распаду в секунду.

    2.3 Доза облучения

    Особенностью ионизирующего излучения является тот факт, что количество поглощенной телом энергии и ее распределение по отдельным органам и тканям может быть точно установлено измерением или расчетом.

    При облучении организма человека ионизирующим излучением он поглощает ее энергию, причем чем больше количество поглощенной энергии, тем больше количество гибнущих от этого клеток. Характеристикой этого процесса, а точнее мерилом количества ионизирующего излучения и косвенным показателем возможного ущерба от облучения является доза излучения. С ее помощью математически описывается воздействие излучения на организм человека.

    В зависимости от способа и места применения доза бывает нескольких видов. Длительное время самым распространенным понятием была экспозиционная доза, но сейчас оно устарело и, как правило, не используется. Экспозиционная доза описывала действие ионизирующего излучения в воздухе и потому лишь косвенно давала возможность оценить воздействие излучения на организм. Но, поскольку, другого понятия не было, она, хотя и приближенно, позволяла определять уровень лучевого воздействия на человека. Единицей ее измерения был рентген (Р). Рентген большая величина и в практике обычно использовались ее производные и, в частности, одна тысячная рентгена или милирентген (мР) и даже одна миллионная рентгена -микрорентген (мкР).

    На протяжении многих лет экспозиционная доза была единственной мерой уровня лучевого воздействия на человека. Поэтому и сейчас еще многие-дозиметры, предназначенные для измерения внешнего излучения, градуированы в единицах экспозиционной дозы - рентгена и его производных.

    В новой системе единиц СИ, используемой в настоящее время, экспозиционная доза заменена величиной "керма в воздухе". Керма в воздухе является величиной, равносильной поглощенной дозе в воздухе и ее можно использовать, например, для описания радиационного поля в присутствии (или отсутствии) пациента. Керма в воздухе 1 Гр характеризует передачу энергии рентгеновского излучения в воздухе, равной 1 Дж, одному килограмму воздуха. Экспозиционной дозе 1 Р соответствует значение кермы в воздухе 8,7 мГр.

    шум радиация уран облучение

    Керма может быть определена для любого поглощающего материала. Для рентгеновского излучения, используемого в рентгенодиагностике, керма мягких тканей приблизительно равна керме в воздухе (разность порядка 10%), и для целей радиационной защиты их принято считать одинаковыми.

    Основополагающей дозой в системе дозиметрии является поглощенная доза, которая выражает количество излучения, переданного единичному объему (или массе) вещества в организме человека. В медицинской дозиметрии обычно используется поглощенная доза, полученная облучаемым органом или тканью, например, легкими. Выражается поглощенная доза в греях (Гр). Это очень большая доза в сто раз больше рада, которым ранее выражали значения поглощенных доз. Поэтому в практике используются ее производные: миллигрей (мГр) и микрогрей (мкГр).

    Однако поглощенная доза выражает только физический смысл радиационного воздействия. А поскольку мы имеем дело с облучением организма человека, нужно учитывать биологическое действие излучения, так как различные его виды по разному влияют на организм. Например, 1Гр, полученный тканью от альфа-излучения, является более повреждающим в биологическом отношении действием, чем 1 Гр от бета-излучения, так как альфа-частица производит большую ионизацию на пути своего пробега, чем бета-частица. Для учета этих различий была введена усовершенствованная система измерений и оценки ионизирующего излучения - эквивалентная доза. Она получена умножением поглощенной дозы на соответствующий коэффициент качества излучения. Таким образом, эквивалентная доза уже учитывает биологическое действие излучения и измеряется в зивертах (Зв). Также как и для грея в практике используются ее производные: миллизиверт (мЗв) и микрозиверт (мкЗв). Для гамма- и рентгеновского излучения коэффициент качества равен единице и потому зиверт и фей равны между собой. 1 Зв = 1 Гр ~ 100 Р. Для альфа-излучения такой коэффициент равен 20. Это значит, что поглощенная доза от него в 1 Гр создает в организме дозу 20 Зв.

    Эквивалентная доза как бы приводит к общему знаменателю оценку воздействия различных видов ионизирующих излучений на какой-нибудь орган или ткань. Она часто используется и нормируется в системе радиационной безопасности человека.

    Но даже эквивалентная доза не может нас полностью устроить, так как она относится к облучаемому органу, а мы имеем дело, как правило, со всем организмом. На помощь пришла новая универсальная доза. Она называется эффективной и приравнивается к дозе облучения, которую получает весь организм, независимо от того, какая его часть реально облучается. Это очень важно, поскольку теперь мы можем сравнивать и интегрировать облучения различных частей тела, например, черепа и позвоночника или легких. Эффективная доза является очень сложной по своему построению и может быть только рассчитана. Измерить ее нельзя, так как она равна сумме эквивалентных доз в разных органах, умноженных на соответствующие коэффициенты (взвешивающие), учитывающие вклад данного органа или его чувствительность, точнее радиочувствительность, к действию ионизирующего излучения на весь организм (таблице № 10, приложение А).

    Эффективная доза является мерой радиационного риска любого облучения и также, как и эквивалентная, выражается в зивертах. Эквивалентная и эффективная дозы используются для подсчета только малых доз облучения, которыми, например, сопровождаются рентгенорадиологические исследования в медицине, поскольку они выражают показатели риска. Для целей лучевой терапии они не используются. Там применяется поглощенная доза.

    Все вышеупомянутые дозиметрические величины относятся к облучению отдельного человека. При облучении групп (популяций) людей необходимо учитывать численность населения, подвергшегося облучению. Это будет уже коллективная доза, которая равна сумме индивидуальных эффективных доз. Единицей измерения коллективных доз является человеко-зиверт (чел.-Зв). Например, в условном районе, где проживает 200 тысяч человек и средняя эффективная доза на одного жителя составляет 5 мЗв, иопуляционная эффективная доза составит здесь 1000 чел.-Зв.

    Как видно математический (или дозиметрический) аппарат описания дозы не очень простой, но зато он позволяет не только зафиксировать количество полученной человеком энергии излучения, но и определить вероятный ущерб, который она вызовет.

    2.4 Уровни доз облучения населения

    В настоящее время хорошо изучен вклад различных источников в дозу облучения человека. Основные из них приведены в (таблице № 10, приложении Б). Как видно, средняя индивидуальная эффективная доза облучения жителя России за год составляет -4000 мкЗв (4 мЗв). Основной вклад в дозу вносит природная компонента (70%), на втором месте стоит медицинское облучение (29%). Вклад остальных источников составляет около 1%.

    За 70 лет жизни человек получит дозу, равную -200 мЗв от постоянно воздействующих или «сверххронических» источников излучения и примерно 100 мЗв от медицинского облучения, где оно происходит за секунды или минуты, т.е. от «сверхострого» облучения Вклад аварийных источников облучения и особенно остальных техногенных в общее облучение россиянина, проживающего вне зон радиоактивного загрязнения, ничтожно мал.

    Из приведенных данных видно, что медицинское облучение является наиболее важным среди всего облучения, созданного человеком. При этом профессиональное облучение ограничено (нормировано) годовой дозой 20 мЗв.

    Облучение пациентов в медицине не ограничивается кроме профилактического (флюорографического) - 1 мЗв, так как считается, что польза, получаемая пациентом при проведении исследования превышает вред от его облучения.

    2.5 Описание урана и его изотопа, урана-238

    Уран, элемент с порядковым номером 92, самый тяжелый из встречающихся в природе. Использовался он еще в начале нашей эры, осколки керамики с желтой глазурью (содержащие более 1% оксида урана) находились среди развалин Помпеи и Геркуланума.

    Уран был открыт в 1789 году в урановой смолке немецким химиком Мартоном Генрихом Клапротом, назвавшего его в честь планеты уран, открытой в 1781. Впервые получил металлический уран французский химик Юджин Пелиго в 1841, восстановив безводный тетрахлорид урана калием. В 1896 году Антуан-Анри Беккерель открывает явление радиоактивности урана случайным засвечиванием фотопластинок ионизирующим излучением от оказавшегося поблизости кусочка соли урана.

    2.5.1 Химические и физические свойства Урана

    Уран очень тяжелый, серебристо-белый глянцеватый металл. В чистом виде он немного мягче стали, ковкий, гибкий, обладает небольшими парамагнитными свойствами. Уран имеет три аллотропные формы: альфа (призматическая, стабильна до 667.7 °C), бета (четырехугольная, стабильна от 667.7 до 774.8 °C), гамма (с объемно центрированной кубической структурой, существующей от 774.8 °C до точки плавления), в которых уран наиболее податлив и удобен для обработки. Альфа-фаза - очень примечательный тип призматической структуры, состоящей из волнистых слоев атомов в чрезвычайно асимметричной призматической решетке. Такая анизотропная структура затрудняет сплав урана с другими металлами. Только молибден и ниобий могут создавать с ураном твердофазные сплавы. Правда, металлический уран может вступать во взаимодействие со многими сплавами, образуя интерметаллические соединения.

    Химически уран очень активный металл. Быстро окисляясь на воздухе, он покрывается радужной пленкой оксида. Мелкий порошок урана самовоспламеняется на воздухе, он зажигается при температуре 150-175 °C, образуя U3O8. При 1000 °C уран соединяется с азотом, образуя желтый нитрид урана. Вода способна разъедать металл, медленно при низкой температуре, и быстро при высокой. Уран растворяется в соляной, азотной и других кислотах, образуя четырехвалентные соли, зато не взаимодействует с щелочами. Уран вытесняет водород из неорганических кислот и солевых растворов таких металлов как ртуть, серебро, медь, олово, платина и золото. При сильном встряхивании металлические частицы урана начинают светиться.

    Уран имеет четыре степени окисления - III-VI. Шестивалентные соединения включают в себя триокись уранила UO3 и уранилхлорид урана UO2Cl2. Тетрахлорид урана UCl4 и диоксид урана UO2 - примеры четырехвалентного урана. Вещества, содержащие четырехвалентный уран обычно нестабильны и обращаются в шестивалентные при длительном пребывании на воздухе. Ураниловые соли, такие как уранилхлорид распадаются в присутствии яркого света или органики.

    Изотоп урана U-238.

    Ура́н (устаревший вариант — ура́ний) — химический элемент с атомным номером 92 в периодической системе, атомная масса 238,029; обозначается символом U (лат. Uranium), относится к семейству актиноидов.


    Ура́н / Uranium (U)

    Атомный номер

    92

    Свойства атома

    Атомная масса (молярная масса)

    238,0289 а. е. м. (г/моль)

    Радиус атома

    138 пм

    Энергия ионизации (первый электрон)

    686,4(7,11) кДж/моль (эВ)

    Электронная конфигурация

    [Rn] 5f3 6d1 7s2

    Химические свойства

    Ковалентный радиус

    142 пм

    Радиус иона

    (+6e) 80 (+4e) 97 пм

    Электроотрицательность (по Полингу) 1,38

    Электродный потенциал

    U←U4+ -1,38В

    U←U3+ -1,66В

    U←U2+ -0,1В

    Степени окисления 6, 5, 4, 3

    Термодинамические свойства простого вещества

    Плотность

    19,05 г/см³

    Молярная теплоёмкость

    27,67[1]Дж/(K·моль)

    Теплопроводность

    27,5 Вт/(м·K)

    Температура плавления

    1405,5 K

    Теплота плавления

    12,6 кДж/моль

    Температура кипения

    4018 K

    Теплота испарения

    417 кДж/моль

    Молярный объём

    12,5 см³/моль

    Кристаллическая решётка простого вещества

    Структура решётки орторомбическая

    Параметры решётки

    2,850 Å
    Отношение c/a n/a

    Температура Дебая

    n/a K

    Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12


    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.