МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Реферат: История развития электроники

     

     

     

     

     



    Потенциометр R1 регулирует ток детектора. Прослушивание сигналов принятых радиостанцией осуществляется на низкоуровневый телефон, катушки которого включены последовательно с источником питания через дроссель Др 1 и катушку L2.

     Первый образец кристадина был изготовлен Лосевым в 1923 году. В это время в Москве начала работать центральная радиотелефонная станция, передачи которой можно было принимать на простые детекторные приемники только вблизи столицы. Кристадин Лосева позволял не только увеличить дальность приема радиостанции, но был проще и дешевле. Интерес к кристадину в то время был огромный. "Сенсационное изобретение" – под таким заголовком американский журнал "Radio News" напечатал в сентябре 1924 г. редакционную статью посвященную работе Лосева. "Открытие Лосева делает эпоху", – писал журнал, выражая надежду, что сложную электровакуумную лампу вскоре заменит кусочек цинкита или другого вещества простого в изготовлении и применении.

     Продолжая исследование кристаллических детекторов, Лосев открыл свечение карборунда при прохождении через него электрического тока. Спустя 20 лет это же явление было открыто американским физиком Дестрио и получило название электролюминесценции. Важную роль в развитии теории полупроводников в начале 30-х годов сыграли работы проводимые в России под руководством академика А.Ф. Иоффе. В 1931 году он опубликовал статью с пророческим названием: "Полупроводники – новые материалы электроники". Немалую заслугу в исследование полупроводников внесли советские ученые – Б.В. Курчатов, В.П. Жузе и др. В своей работе – "К вопросу об электропроводности закиси меди", опубликованной в 1932 году, они показали, что величина и тип электрической проводимости определяется концентрацией и природой примеси. Немного позднее, советский физик – Я.Н. Френкель создал теорию возбуждения в полупроводниках парных носителей заряда: электронов и дырок. В 1931 г. англичанину Уилсону удалось создать теоретическую модель полупроводника, основанную на том факте, что в твердом теле дискретные энергетические уровни электронов отдельных атомов размываются в непрерывные зоны, разделенные запрещенными зонами (значениями энергии, которые электроны не могут принимать) – "зонная теория полупроводников".

     В 1938 г. Мотт в Англии, Давыдов в СССР, Вальтер Шоттки в Германии сформулировали, независимо, теорию выпрямляющего действия контакта металл-полупроводник. Эта обширная программа исследований, выполняемая учеными разных стран и привела к экспериментальному созданию сначала точечного, а затем и плоскостного транзистора.

     4.4 История развития полевых транзисторов.

     4.4.1 Первый полевой транзистор был запатентован в США в 1926/30гг., 1928/32гг. и 1928/33гг. Лилиенфельд – автор этих потентов. Он родился в 1882 году в Польше. С 1910 по 1926 г. был профессором Лейпцигского университета. В 1926 г. иммигрировал в США и подал заявку на патент.

     Предложенные Лилиенфельдом транзисторы не были внедрены в производство. Транзистор по одному из первых патентов № 1900018 представлен на Рис. 4.6

                                                                                                 


     


     Наиболее важная особенность изобретения Лилиенфельда заключается в том, что он понимал работу транзистора на принципе модуляции проводимости исходя из электростатики. В описании к патенту формулируется, что проводимость тонкой области полупроводникового канала модулируется входным сигналом, поступающим на затвор через входной трансформатор.

     4.4.2

     В 1935 году в Англии получил патент на полевой транзистор немецкий изобретатель О. Хейл

    Схема из патента № 439457 представлена на Рис. 4.7 где:

                1 – управляющий электрод

                2 – тонкий слой полупроводника(теллур, йод, окись меди, пятиокись ванадия)

                3,4 – омические контакты к полупроводнику

                5 – источник постоянного тока

                6 – источник переменного напряжения


                7 – амперметр

                                                                                     



     Управляющий электрод (1) выполняет роль затвора, электрод (3) выполняет роль стока, электрод (4) роль истока. Подавая переменный сигнал на затвор, расположенный очень близко к проводнику, получаем изменение сопротивления полупроводника (2) между стоком и истоком. При низкой частоте можно наблюдать колебание стрелки амперметра (7). Данное изобретение является прототипом полевого транзистора с изолированным затвором.

     4.4.3

     Следующий период волны изобретений по транзисторам наступил в 1939 году, когда после трехлетних изысканий по твердотельному усилителю в фирме "BTL" (Bell Telephone Laboratories) Шокли был приглашен включиться в исследование Браттейна по медноокисному выпрямителю. Работа была прервана второй мировой войной, но уже перед отъездом на фронт Шокли предложил два транзистора. Исследования по транзисторам возобновились после войны, когда в середине 1945 г. Шокли вернулся в "BTL", а в 1946 г. туда же пришел Бардин.

     В 1952 г. Шокли описал униполярный(полевой) транзистор с управляющим электродом, состоящим, как показано на рис. 4.8, из обратно смещенного p-n – перехода. Предложенный Шокли полевой транзистор состоит из полупроводникового стержня n-типа (канал n-типа) с омическими выводами на торцах. В качестве полупроводника использован кремний(Si). На поверхности канала с противоположных сторон формируется p-n-переход, таким образом, чтобы он был параллелен направлению тока в канале. Рассмотрим как течет ток между омическими контактами истока и стока. Проводимость канала определяют основные носители заряда для данного канала. В нашем случае электроны в канале n-типа. Вывод, от которого носители начинают свой путь, называется истоком. На рис. 4.8 – это отрицательный электрод. Второй омический электрод, к которому подходят электроны, – сток. Третий вывод от p-n-перехода называют затвор.

     Точное описание процессов в полевом транзисторе представляет определенные трудности. Поэтому, Шокли предложил упрощенную теорию униполярного транзистора в основном объясняющую свойства этого прибора. При изменении входного напряжения (исток-затвор) изменяется обратное напряжение на p-n-переходе, что приводит к изменению толщины запирающего слоя. Соответственно изменяется площадь поперечного сечения n-канала, через который проходит поток основных носителей заряда, т.е. выходной ток. При высоком напряжении затвора запирающий слой становится все толще и площадь поперечного сечения уменьшается до нуля, а сопротивление канала увеличивается до бесконечности и транзистор запирается.

     4.4.4

     В 1963 г. Хофштейн и Хайман описали другую конструкцию полевого транзистора, где используется поле в диэлектрике, расположенном между пластиной полупроводника и металлической пленкой. Такие транзисторы со структурой металл-диэлектрик-полупроводник называются МДП-транзисторы. В период с 1952 по 1970 гг. полевые транзисторы оставались на лабораторной стадии развития. Три фактора способствовали стремительному развитию полевых транзисторов в 70-е годы:

    1) Развитие физики полупроводников и прогресс в технологии полупроводников, что позволило получить приборы с заданными характеристиками.

    2) Создание новых технологических методов, таких как тонкопленочные технологии для получения структуры с изолированным затвором.

    3) Широкое внедрение транзисторов в электрическое оборудование.

     4.5 История развития серийного производства транзисторов в США и СССР

     4.5.1

     Ускоренная разработка и производство транзисторов развернулись в США в кремниевой долине, расположенной в 80-ти км от Сан-Франциско. Возникновение кремниевой долины связывают с именем Ф. Термена – декана инженерного факультета Стенфордского университета, когда его студенты Хьюлетт, Паккард и братья Вариан создали фирмы, прославившие их имена во время второй мировой войны.

     Бурное развитие кремниевой долины началось, когда Шокли покинул "BTL" и основал собственную фирму по производству кремниевых транзисторов при финансовой помощи питомца Калифорнийского политехнического института А. Беккмана. Его фирма начала работу осенью 1955 г., как отделение фирмы "Beckman Instruments" в армейских казармах Паоло-Алто. Шокли пригласил 12 специалистов (Хорсли, Нойс, Мур, Гринич, Робертс, Хорни, Ласт, Джонс, Клейнер, Блэнк, Нэпик, Са). В 1957 г. фирма изменила свое название на "Shockly Transistor Corporation". Вскоре 8 специалистов (Нойс, Мур, Гринич, Робертс, Хорни, Ласт, Клейнер, Блэнк) договорились с Беккманом и создали отдельную самостоятельную фирму "Fairchild Semiconductor Corporation" в основе деятельности, которой лежало массовое производство высококачественных кремниевых биполярных транзисторов. В качестве первого изделия был выбран в 1957 г. кремниевый n-p-n мезатранзистор с двойной диффузией типа 2N696. Он требовал всего лишь два процесса фотолитографии для создания эмиттера и металлических контактов. Термин мезатранзистор был предложен Эрли из "BTL". Введя дополнительную операцию фотолитографии, Хорни заменил мезаструктуру коллектора диффузионным карманом и закрыл место пересечения эмиторного и коллекторного переходов с поверхностью термическим оксидом(1000 oС). Технологию таких транзисторов Хорни назвал планарным процессом. В 1961 г. был начат крупносерийный выпуск двух планарных кремниевых биполярных транзисторов 2N613(n-p-n), 2N869(p-n-p)

     Институт полупроводниковых материалов и оборудования (США) составил генеалогическое дерево и первые ветви отпочкованные от фирмы Shockley выглядят так: Ласт и Хорни в 1961 году основали Amelco, которая позже превратилась в Teledyne Semiconductor. Хорни в 1964 году создал Union Corbide Electronics, в 1967 году – Intersil. Ежегодно создавалось по четыре фирмы, и за период с 1957 по 1983 г. в кремниевой долине было создано более 100 фирм. Рост продолжается и сейчас. Он стимулируется близостью Стенфордского и Калифорнийского университета и активным участием их сотрудников в деле организации фирм (Рис. 4.9).

                            Рис. 4.9  Динамика развития кремниевой долины.

    1914–1920 гг 1955 – 57 гг 1960 г 1961 г 1968 г

    Хьюлетт-Пакард (два друга и братья Вариан)

    BTL

    Shockley Semiconductor

         Laboratory

    (Beckman Instruments) Паоло Алто(военные казармы).

    Са

    Хорсли

    Джонс     12 чел.

    Нэпик

    Нойс

    Мур    

    Гринич

    Робертс

    Хорни

    Ласт

    Клейнер

    Блэнк

        Fairchild

        Semiconductor

        Corporation

         8 чел.

       Amelco +

       Уэнлесс

       Сноу

       Эндрю Гроув

       Дил

    Intel(Интергрейтед электроникс)

    12 чел.

     (Маунтин Вью)

     4.5.2

     Первыми транзисторами выпущенными отечественной промышленностью были точечные транзисторы, которые предназначались для усиления и генерирования колебаний частотой до 5 МГц. В процессе производства первых в мире транзисторов были отработаны отдельные технологические процессы и разработаны методы контроля параметров. Накопленный опыт позволил перейти к выпуску более совершенных приборов, которые уже могли работать на частотах до 10 МГц. В дальнейшем на смену точечным транзисторам пришли плоскостные, обладающие более высокими электрическими и эксплуатационными качествами. Первые транзисторы типа П1 и П2 предназначались для усиления и генерирования электрических колебаний с частотой до 100 кГц. Затем появились более мощные низкочастотные транзисторы П3 и П4 применение которых в 2-х тактных усилителях позволяло получить выходную мощность до нескольких десятков ватт. По мере развития полупроводниковой промышленности происходило освоение новых типов транзисторов, в том числе П5 и П6, которые по сравнению со своими предшественниками обладали улучшенными характеристиками. Шло время, осваивались новые методы изготовления транзисторов, и транзисторы П1 – П6 уже не удовлетворяли действующим требованиям и были сняты с производства. Вместо них появились транзисторы типа П13 – П16, П201 – П203, которые тоже относились к низкочастотным непревышающим 100 кГц. Столь низкий частотный предел объясняется способом изготовления этих транзисторов, осуществляемым методом сплавления. Поэтому транзисторы П1 – П6, П13 – П16, П201 – П203 называют сплавными. Транзисторы способные генерировать и усиливать электрические колебания с частотой в десятки и сотни МГц появились значительно позже – это были транзисторы типа П401 – П403, которые положили начало применению нового диффузионного метода изготовления полупроводниковых приборов. Такие транзисторы называют диффузионными. Дальнейшее развитие шло по пути совершенствования как сплавных, так и диффузионных транзисторов, а так же созданию и освоению новых методов их изготовления.

    5. Предпосылки появления микроэлектроники

    5.1 Требования миниатюризации электрорадиоэлементов со стороны разработчиков радиоаппаратуры.

     С появлением биполярных полевых транзисторов начали воплощаться идеи разработки малогабаритных ЭВМ. На их основе стали создавать бортовые электронные системы для авиационной и космической техники. Так как эти устройства содержали тысячи отдельных ЭРЭ(электрорадиоэлементов) и постоянно требовалось все большее и большее их увеличение, появились и технические трудности. С увеличением числа элементов электронных систем практически не удавалось обеспечить их работоспособность сразу же после сборки, и обеспечить, в дальнейшем, надежность функционирования систем. Даже опытные сборщики и наладчики ЭВМ допускали несколько ошибок на 1000 спаек. Разработчики предполагали новые перспективные схемы, а изготовители не могли запустить эти схемы сразу после сборки т.к. при монтаже не удавалось избежать ошибок, обрывов в цепи за счет не пропаев, и коротких замыканий. Требовалась длинная и кропотливая наладка. Проблема качества монтажно-сборочных работ стало основной проблемой изготовителей при обеспечении работоспособности и надежности радиоэлектронных устройств. Решение проблемы межсоединений и явилось предпосылкой к появлению микроэлектроники. Прообразом будущих микросхем послужила печатная плата, в которой все одиночные проводники объединены в единое целое и изготавливаются одновременно групповым методом путем стравливания медной фольги с плоскостью фольгированного диэлектрика. Единственным видом интеграции в этом случае являются проводники. Применение печатных плат хотя и не решает проблемы миниатюризации, однако решает проблему повышения надежности межсоединений. Технология изготовления печатных плат не дает возможности изготовить одновременно другие пассивные элементы кроме проводников. Именно поэтому печатные платы не превратились в интегральные микросхемы в современном понимании. Первыми были разработаны в конце 40-х годов толстопленочные гибридные схемы, в основу их изготовления была положена уже отработанная технология изготовления керамических конденсаторов, использующая метод нанесения на керамическую подложку через трафареты паст, содержащих порошок серебра и стекла. Переход к изготовлению на одной подложке нескольких соединенных между собой конденсаторов, а затем соединение их с композиционными резисторами, наносимыми также с помощью трафарета, с последующим вжиганием привело к созданию гибридных схем, состоящих из конденсаторов и резисторов. Вскоре в состав гибридных схем были включены и дискретные активные и пассивные компоненты: навесные конденсаторы, диоды и транзисторы. В дальнейшем развитии гибридных схем навесным монтажем были включены сверхминиатюрные электровакуумные лампы. Такие схемы получили название толстопленочные гибридные интегральные микросхемы (ГИС). Тонкопленочная технология производства интегральных микросхем включает в себя нанесение в вакууме на гладкую поверхность диэлектрических подложек тонких пленок различных материалов(проводящих, диэлектрических, резистивных).

     В 60-е годы огромные усилия исследователей были направлены на создание тонкопленочных активных элементов. Однако надежно работающих транзисторов с воспроизводимыми характеристиками никак не удавалось получить, поэтому в тонкопленочных ГИС продолжают использовать активные навесные элементы. К моменту изобретения интегральных микросхем из полупроводниковых материалов уже научились изготавливать дискретные транзисторы и резисторы. Для изготовления конденсатора уже использовали емкость обратно смещенного p-n перехода. Для изготовления резисторов использовались омические свойства кристалла полупроводника. На очереди стояла задача объединить все эти элементы в одном устройстве.

    Страницы: 1, 2, 3, 4


    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.