МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Дипломная работа: Устройство измерения отношения двух напряжений

         где М - коэффициент светового климата (М=0,8);

               С - коэффициент солнечности (С=0,7);

               ЕН3 - норматив (ЕН3=1,5%).

    Подставив значения, найдем, что КЕО=0,84%. 

    Мероприятия, обеспечивающие выполнение требований СНиП в помещении следующие:

    ·         рациональное размещение рабочих мест;

    ·         регулярная очистка стекол не реже двух раз в год;

    ·         проверка соответствия освещенности нормам искусственного освещения на рабочем месте.

    6.1.2 Шум и вибрация

    При регулярном воздействии шум оказывает на человека вредное физиологическое действие, которое заключается не только в притуплении, а иногда и к полной потере слуха. Шум, действуя на центральную нервную систему, вызывает функциональные сдвиги вегетативной нервной системы, замедление реакции Под воздействием шума наблюдаются ослабление памяти, остроты зрения, внимания Таким образом, шум может явиться причиной травматизма.

    Основными источниками шума являются :

    *               измерительельная аппаратура ;

    *              разговорная речь ;

    *               устройства вентиляции приборов .

    Допустимый уровень шума согласно ГОСТ 12.1.003-83 составляет 80 дБА. Ожидаемый уровень шума не более 70 дБА. Следовательно, можно сделать вывод, что дополнительные мероприятия по борьбе с шумом не требуются

    Источников вибрации в помещении нет, в связи с чем применять какие-либо меры  виброзащиты необходимости нет.

    6.1.3 Пожаробезопасность

    Как известно пожар легче предупредить, чем потушить. Следовательно, необходимо предусмотреть все возможные причины возникновения пожара и средства для его тушения. Пожарная безопасность помещения регламентируется нормами ОНТП 24-86, категория В, класс помещения по ПУЭ-85 П-IIа, инструкциями по обеспечению пожарной безопасности на отдельных объектах. В нашем помещении не хранятся и не применяются при работе легковоспламеняющиеся вещества, а также нет горючих жидкостей и газов, поэтому причинами возникновения пожара могут быть: неисправность или неправильная эксплуатация электрооборудования, халатность работающего персонала по выполнению противопожарных мероприятий.

    Согласно СНиП II 2-80, рассматриваемое нами помещение относится к III степени огнестойкости. Горючими компонентами в производственных и наладочных цехах являются: строительные материалы для акустической и эстетической отделки помещений, перегородки, двери, полы, изоляция кабелей и др.

    Особое внимание необходимо уделить к средствам тушения пожара, к которым относятся огнетушители, сухой песок, асбестовые одеяла, пожарные стволы, внутренние пожарные водопроводы и т.п. В зданиях пожарные краны устанавливаются в коридорах, на площадках лестничных клеток и входов.

    Для тушения жидких и твердых веществ, а также электроустановок, находящихся под напряжением применяются газовые и углекислотные огнетушители. В нашем производственном помещении имеются два углекислотных огнетушителя типа ОУ – 5.

    6.1.4 Метеорологические условия.

    Метеорологические условия на производстве определяются следующими параметрами: температурой воздуха в помещении (С), относительной влажностью воздуха (%), подвижностью воздуха (м/с), тепловым излучением (Вт/м²). Эти параметры отдельно и в комплексе влияют на организм человека, определяя его физическое состояние и, соответственно, производительность работы, поэтому является очень важным соблюдение производственной санитарии, техники безопасности и обеспечение оптимальных условий труда работающих.

    Согласно [ГОСТ 12.1.005-88 ССБТ. Воздух рабочей зоны. Общие санитарно-гигиенические требования.] выполняемую физическую работу относим к  категории 1а. К ней относятся работы, производимые сидя, стоя или связанные с ходьбой, но не требующие систематического физического напряжения или поднятия или переноски тяжестей. Значения параметров метеоусловий должны удовлетворять допустимым нормам по [ГОСТ 12.1.005-88 ССБТ. Воздух рабочей зоны. Общие санитарно-гигиенические требования], представленным  таблице - 6.1.

    Таблица 6.1 - Допустимые нормы температуры, относительной влажности и скорости движения воздуха в рабочей зоне помещения ВЦ

    Период года Допустимое значение  температуры, С Допустимое значение относительной влажности, % Допустимое значение скорости движения воздуха, м/с
    Холодный 20-24 не более  75 не более  0.1
    Теплый 22-28

    не более  70
    (при 25 °С)

    не более  0.1-0.2

    Реально, в помещении поддерживаются описанные выше значения показателей благодаря наличию системы отопления и вентиляции.

    6.1.5 Эргономика и техническая эстетика

    Конструкция рабочего места и взаимное расположение всех его элементов (сиденье, органы  управления, средства отображения информации) должны соответствовать антропометрическим,  физиологическим и психофизиологическим требованиям, а также характеру работы.

    Размещение индикаторов и панелей управления производится согласно принципам:

    ·                     функциональной организации;

    ·                     по значимости; приборы сгруппированы в зависимости от того, насколько решающими они являются для выполнения группы операций;

    ·                     частоты использования.

    Индикаторы занимают центральную часть. Все это соответствует требованиям ГОСТ 12.2.032-78; ГОСТ 12.2.033-78, ГОСТ 12.2.049-80.

    Конструкцией рабочего места обеспечено оптимальное положение работающего, выполнение трудовых операций в пределах зоны досягаемости, размещение органов управления таким образом, чтобы при работе двумя руками не было их перекрещивания.

    6.1.6 Электробезопасность

    Исключительно большое значение, для электробезопасности имеет правильная организация обслуживания действующих электроустановок, проведения ремонтных, монтажных и профилактических работ. При этом под правильной организацией понимается строгое выполнение ряда  организационных и технических мероприятий и средств.

    Помещение относится к классу без повышенной опасности, так как нет условий, создающих повышенную опасность (полы покрыты изолирующим материалом, температура в помещении не превышает 25оС).

    В помещении используется электрическое оборудование, принадлежащее к I классу Электротехнических условий по ГОСТ 12.1.013-79.ССБТ. Электробезопасность. Общие требования, то есть изделия, имеющие, по крайней мере, рабочую изоляцию и элемент для заземления. Все установки работают под напряжением 220 В переменного тока.

    В помещении приняты меры безопасности при эксплуатации электроустановок. Обеспечена недоступность токоведущих частей для случайного прикосновения (все приборы находятся в корпусах, все панели заблокированы). Осуществляются организационные мероприятия. Это инструктаж по технике безопасности на рабочих местах, периодическая проверка качества заземления и сопротивления изоляции. Кроме того применено зануление, расчет которого приведен далее.

    6.2 Расчет зануления

    Опасность поражения током при прикосновении к корпусу и другим нетоковедущим металлическим частям электрооборудования, оказавшимся под напряжением вследствие замыкания на корпус и по другим причинам, является основной причиной получения персоналом травм. Эта опасность может быть устранена быстрым отключением поврежденной установки от питающей сети и вместе с тем снижения напряжения корпуса относительно земли. Для этой цели служит зануление.

    Зануление - преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением.

    Нулевой защитный проводник – это проводник, соединяющий зануляемые части с глухозаземленной нейтральной точкой источника тока или ее эквивалентом. Эквивалентом нейтральной точки источника тока могут быть: средняя точка источника постоянного тока, заземленный вывод источника однофазного тока, искусственная нейтральная точка сети, созданная с помощью трансформаторов, резисторов и т. п.

    Принцип действия зануления - превращение замыкания на корпус в однофазное короткое замыкание (т.е. между фазным и нулевым защитным проводниками) с целью вызвать большой ток, способный обеспечить срабатывание защиты и тем самым автоматически отключить поврежденную установку от питающей сети.

    Основные требования, предъявляемые к занулению:

    ·      проводник должен иметь проводимость не менее 50 % от проводимости фазного провода;

    ·      повторные заземлители должны располагаться через каждые 250 метров, а также находится на концах линии и ответвлений длинной более 200 метров;

    ·      сопротивление заземления нейтрали (R0) должно быть не более 4 Ом (лишь для источников небольшой мощности до 100 кВА сопротивление нейтрали может составлять 10 Ом );

    ·      сопротивление заземления каждого из повторных заземлителей (Rп) должно быть не более 10 Ом, а в сетях, в которых R0 допускается, оно может составлять 30 Ом при условии, что число повторных заземлителей  в этой сети не менее трех;

    ·      ток короткого замыкания Iк должен в три раза превышать номинальный ток ближайшей плавкой вставки предохранителя или номинальный ток расцепителя автоматического выключателя;

    ·      в одной и той же сети запрещается одновременно выполнять защитное заземление и зануление различных корпусов. Одновременное заземление и зануление одного оборудования не представляет опасности и допускается.

     


    Рисунок 6.2 - Схема зануления оборудования.

    Целью расчета зануления является определение условий, при которых оно быстро отключает поврежденную установку от сети, выбор сечения фазного и нулевого проводника, выбор устройства защиты, расчет повторного заземления нейтрали.

    Автомат защиты размещается в распределительном щите. Схема зануления рабочих мест приведена на рисунке 6.2. Цифрами обозначены :

    1 - распределительный щит;

    2 - нейтраль источника тока;

    3 - защитный нулевой проводник;

    4 - повторное заземление нейтрали;

    5 - рабочие места.

    При замыкании фазы на зануленный корпус электроустановка автоматически отключится, если значение тока однофазного короткого замыкания Iк, А, удовлетворяет условию :

    Iк ≥ к * Iном ,

    где:     Iк - номинальный ток плавкой вставки предохранителя или ток срабатывания автоматического выключателя, А;

    к - коэффициент кратности тока.

    Для автоматов с номинальным током до 100 А кратность тока должна быть не менее 1,4.

    Определим ток срабатывания автомата защиты. Предполагаем, что суммарная потребляемая мощность измерительной аппаратурой, приборами освещения и другими установками и приспособлениями не превышает 6 кВт. Тогда потребляемый ток :

    Iпот = 6000 / 220 = 27,3 А  ;                                             (6.1)

    Ток срабатывания автомата защиты должен быть больше, чем потребляемый. Автоматы, выпускаемые промышленностью рассчитаны на стандартный ряд номинальных токов срабатывания. Большее ближайшее значение из этого ряда составляет 30 А. Исходя из этого выберем автомат защиты типа   .

       Определим ток короткого замыкания:

      

     ;                             (6.2)

    где   Uф - напряжение сети ; Rф и Rн - активные, а Хф и Хн - внутренние индуктивные сопротивления фазного и защитного нулевого проводников соответственно ;  Хп - сопротивление взаимоиндукции петли фаза - ноль. 

    Для медных и алюминиевых проводов можно пренебречь Хф и Хн. Также для применяемого кабеля можно пренебречь величиной Хп. С учетом сделанных допущений, а также формулы (6.1) :

     ;                                                      (6.3)

    Полная проводимость нулевого защитного провода согласно сделанных ранее замечаний :

    Rн ≤ 2 * Rф ;                                                               (6.4)

     

    Пусть Rн = 1.5*Rф , тогда формулу (3) запишем следующим образом:

                                                                                                                    (6.5)

    В справочных данных для трансформатора мощностью 25 кВт при схеме соединения обмоток типа «звезда» и напряжением 380/220 В полное сопротивление трансформатора ZТ = 3,11 Ом.

    Определим сопротивление фазного провода Rф :

                                                         ;                                                       (6.6)

    Rф = 2,93 Ом.

    Определим сопротивление защитного провода  Rн = Rф .

    Выберем сечение проводов. При наибольшей длительно допустимой нагрузке для медных проводов с резиновой изоляцией 30 А (при температуре окружающей среды 250С ) сечение составляет 2,5 мм2 .Сечение алюминиевых проводов при тех же условиях - 4 мм2.

    Проведем расчет поверхностных заземлителей нейтрали. Согласно ПУЭ сопротивление заземления нейтрали трансформатора при напряжении 380/220 В не должно превышать 4 Ом. Сопротивление каждого из повторных заземлителей должно быть не более 10 Ом.

    Повторные заземлители расположены на воздушных линиях через каждые 250 м. Рассмотрим два варианта заземления :

    1. Заземлители расположены в черноземе.

    2. Заземлители расположены в глинистой почве.

    Соответственные расчетные удельные сопротивления на черноземе   r1=200 Ом*м, на грунте r=40 Ом * м.

    В качестве заземлителей применим трубчатые вертикальные электроды диаметром 50 мм и длинной 2,5 м, расположенные на глубине 0,7 м.

    Определим сопротивление растекания тока одного вертикального стержневого электрода:

                                    ;                                      (6.7)

    где      l и d - длинна и диаметр электрода соответственно, м ;

    t - глубина заложения середины электрода от поверхности земли, м ;

    r - расчетное удельное сопротивление грунта, Ом*м.

    1.  Для чернозема              Rc1 =   47,1 Ом.

    2.  Для грунта                     Rc1 =  9,4 Ом.

    По рассчитанным данным можно сделать вывод, что для обеспечения качественного заземления на грунте достаточно одного заземленного электрода, в то время как на глинистой почве необходимы несколько электродов, соединенные стальной полосой сечением 4х12 мм и длинной 2,5 м. Определим сопротивление растекания тока для полосы :

                                                   ;                                                          (6.8)

    где      L - длинна полосы, м;

    b - ширина полосы, м;

    t - глубина заложения полосы, м.

    Rп = 76 Ом

    Определим общее сопротивление заземляющего устройства расположенного на глинистой почве:

    ;                                            (6.9)

    где hс и hн  - коэффициенты экранирования, приведенные в [10].

    Rз = 9,1 Ом.

    Таким образом, чтобы обеспечить требуемое сопротивление повторных заземлителей не более 10 Ом необходимо применить на глинистой почве один вертикальный электрод и шесть вертикальных электродов, соединенных стальной полосой при черноземе. Заземлители выполнены из стальных труб длиной 2,5 м, диаметром 50 мм и вкопаны на глубину 0.7 м.

    6.3 - Охрана окружающей среды

    В наш век научно технической революции, загрязнение окружающей среды становится важной проблемой для мирового сообщества. Основным источником загрязнения атмосферного воздуха являются промышленные предприятия, тепловые электростанции, автотранспорт, самолеты и сельскохозяйственное производство. Ежегодно в атмосферу планеты выбрасывается 200 млн. т. оксида углерода, 151 млн. т. оксида серы, свыше 500 млн. т. различных углеводородов, более 250 млн. т. мелкодисперсных аэрозолей (пыли) и многих других веществ.

    Охрана атмосферного воздуха достигается очисткой выбросов предприятий, снижением выбросов автотранспорта, выделением санитарно-защитных зон и применением безотходных производств. Предприятия или их отдельные здания и сооружения с технологическими процессами, выделяющими в воздух вредные вещества, отделяют от жилых застроек санитарно-защитными зонами (лесными полосами или участками земли). Размеры санитарно-защитных зон в зависимости от класса предприятия устанавливаются по санитарным нормам проектирования промышленных предприятий СН 245-71.

    На нашем предприятии в результате процесса изготовления печатных плат и  пайки выделяются большое количество пыли, паров свинца, олова и флюсов. Очистка выбросов от пыли может быть грубой (когда задерживается крупная пыль с размером частиц более 50 мкм), средней (задерживается пыль от 10 до 50 мкм) и тонкой (задерживается пыль до 10 мкм). Для обеспыливания выбросов применяют пылеулавливающие устройства, которые можно разделить на две группы – улавливающие частицы пыли в сухом состоянии («сухие» аппараты) и газопромыватели, в которых пыль улавливается после увлажнения («мокрые» аппараты). Сухие пылеуловители более совершенны и, кроме того, позволяют возвратить уловленную пыль в производство. Для быстрого удаления вредных для дыхательной системы человека веществ воспользуемся вытяжной механической вентиляцией. В качестве устройства очистки воздуха можно применить пористые, нитеобразные или ватообразные материалы, что уменьшит загрязнение окружающей среды нашим предприятием.

    В ходе проделанной работы был рассмотрен ряд факторов, влияющих на работоспособность персонала, работающего в производственном цехе по сборке и наладке устройства измерения отношения напряжений. Был предложен ряд мер по улучшения условий труда работающих. В завершении был произведен расчет зануления и поднят вопрос об охране окружающей среды. Были рассмотрены причины загрязнения природы, и был предложен вариант очистки производственных выбросов.


    7 ГРАЖДАНСКАЯ ОБОРОНА

    7.1 Оценка устойчивости производства измерителя отношения напряжений  при загрязнении радиоактивными веществами после аварии на АЭС

    При разработке дипломного проекта следует уделять внимание не только электрическому, конструктивно – технологическому расчету, но и следует предусмотреть меры безопасности жизнедеятельности обслуживающего персонала при изготовлении печатной платы от крупных различных аварий, стихий, в частности, нужно обеспечить устойчивую работу устройства в условиях повышенной радиации.

    Современный этап развития мировой экономики характеризуется неустанным ростом ядерной энергетики. В настоящее время на Украине находится в эксплуатации 4 атомных электростанции (13 реакторов), что составляет 40% энергии, производимой на АЭС страны. Эксплуатация объектов с ядерными компонентами сопровождается авариями, утечкой радиоактивных веществ, что наносит значительный политический, экономический, экологический и психологический ущерб. Последствия таких аварий могут иметь непредсказуемые результаты.

    Наличие радиоактивных продуктов, которые определяют радиационную обстановку в районе АЭС и зонах радиоактивного загрязнения, оказывает существенное влияние на действия формирований, режимы проживания населения и на проведение аварийно – спасательных работ. Радиоактивное имеет ряд особенностей, отличающих его от других поражающих факторов ядерного взрыва. К ним относятся: большая площадь поражения, до десяти тысяч квадратных километров; длительное сохранение поражающего действия (иногда до месяца), а также трудность обнаружения радиоактивных веществ не имеющих цвета, запаха и других внешних признаков. Вот почему необходимо произвести оценку радиационной обстановки при аварии наАЭС методом прогноза.

    Исходными данными для оценки радиационной обстановки являются:

    -      Тип реактора – 1;

    -      Доля выброшенных радиоактивных веществ из реактора – n = 30%;

    -      Расстояние от объекта до аварийного реактора – Rx = 33.7 км;

    -      Время аварии реактора – Тав = 10.00 час;

    -      Продолжительность работы на объекте – Траб = 12 час;

    -      Допустимая доза облучения – Дуст = 0.3;

    -      Коэффициент ослабления радиации – Косл = 3;

    -      Скорость ветра на высоте 10 метров – V10 = 5 м/с;

    -      Облачность- 3 балл;

    -      Время начала работ на объекте – Тнач = 2 час.

    1. Oпределяем категорию устойчивости атмосферы, соответствующую погодным условиям и заданному времени суток. По условию: облачность отсутствует (3 балла), день, скорость приземного ветра V10 = 5 м/с. Согласно таблице 2.1 категория устойчивости Д – нейтральная (изометрия).

    2. Определяем среднюю скорость ветра Vср в слое распространения радиоактивного облака. Согласно таблице 2.2 для категории устойчивости Д  и скорости приземного ветра V10 = 5 (м/с) средняя скорость ветра 5 (м/с).

    3. Для заданного типа ЯЭР (РБМК – 1000) и доли выброшенных радиоактивных веществ (n = 30%), определяем размеры прогнозируемых зон загрязнения местности и наносим их в масштабе в виде правильных эллипсов.

    Индекс зоны М А Б В
    Длина зоны, км 496,2 126,4 33,7 9,96

     


    Рисунок 7.1 - Размеры прогнозируемых зон загрязнения местности

    4. Исходя из заданного расстояния от объекта народного хозяйства (Rx = 33,7 км) до аварийного реактора с учетом образующихся зон загрязнения устанавливаем, что объект оказывается на внешней границе зоны Б.

    5. Определяем время начала формирования радиоактивного загрязнения (tф) после аварии. Для Rx = 33,7 км, V = 5 м/с, категории устойчивости Д и средней скорости ветра Vср = 5 м/с, tср = 1,5 час. Следовательно, объект народного хозяйства через 1,5 часа после аварии окажется в зоне радиоактивного загрязнения, что потребует принятия дополнительных мер защиты рабочих и служащих.

    6. По таблице для зоны загрязнения Б с учетом времени начала работ (Тнач = 2 час) и продолжительности работы (12.00 час) определяем дозу облучения, которую получат рабочие и служащие объекта при открытом расположении объекта на краю зоны Б.

    ; .

    С учетом нахождения объекта на внешней границе зоны ''Б'' дозу облучения определяем по формуле:

    , где  принимают равным значению, согласно исходным данным.

    Расчеты показывают, что рабочие и служащие объекта за 12 часов работы получат дозу облучения 3,33 (рад), что превышает допустимую дозу облучения:

    7. С учетом нахождения объекта на внешней границе зоны ''Б'' дозу облучения определяем по формуле:

    Расчеты показывают, что рабочие и служащие объекта за 7 часов работы получат дозу облучения 3,33(рад), что превышает допустимую дозу облучения:

    8. Используя данные таблицы 2.10, определяем допустимое время начала работы рабочих и служащих объекта после аварии на АЭС при условии получения Добл не более 5 рад:

    Следовательно, рабочие и служащие объекта, чтобы получить дозу не выше установленной могут начинать работу в зоне ''Б'' и выполнить ее в течении 1 часов, не ранее, чем через 2 месяца после аварии на АЭС.

    Таким образом, на основании исходных данных и полученных расчетов предусмотрены следующие мероприятия по защите различных категорий личного состава объекта, оказавшегося в зоне радиоактивного загрязнения местности.

    Таблица 7,1 – Расчетные данные

    Основные мероприятия:

    1.    Обеспечить круглосуточное радиационное наблюдение измерения проводить через каждые 1,5 часа в соответствии с расчетом ;

    2.    При обнаружении превышения допустимой дозы облучения ,а именно 0,3(рад), прохождении радиоактивного облака рабочих и служащих объекта укрыть в убежище;

    3.    До спада уровня радиации ниже 0,3 рад личные силы персонала должны находится на загрязненной местности в респираторах;

    4.    Во избежание переоблучения рабочие и служащие объекта могут возобновить работу в зоне «Б» и выполнить ее в течении 1 часа, но не  ранее, чем через 2 месяца после аварии на АЭС, в это время , после аварии, укрываться в убежищах;

    5.    Для исключения заноса радиоактивных веществ необходимо провести герметизацию помещений или установить фильтровентиляционные агрегаты, провести дезактивационные работы.


    Страницы: 1, 2, 3, 4, 5, 6, 7


    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.