МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Выделение, изучение свойств микроорганизмов и их использование для выполнения подготовительных процессов переработки овчинно-мехового сырья


    1.3.2 Выделение микробных липаз из микроорганизмов

    Известны микроорганизмы, продуцирующие липазы, оптимум действия которых находится в области высоких температур: 50–550С Pseudomonas fragi, 700С Pseudomonas mephitica. В связи с этим представляется актуальным поиск активных продуцентов липаз, специфичных к твердым жирам, содержащимся в промышленных отходов, а также продуцентов липаз с более высокими температурными оптимума действия. Такие исследования имеют большое значение в связи с экологическими проблемами, связанными с очисткой сточных вод в масло-жировой промышленности /45/.

    Первоначально скрининг продуцентов липаз проведен качественным методом Эйкмана, при котором в стерильные чашки Петри разливают тонким слоем простерилизованный животный жир и после его застывания вводят агаризованную питательную среду. Культуры высевали на питательную среду для получения гигантских колоний. Чашки выдерживали в термостате при 28–300С для мезофильных и 38–400С для термофильных культур в течение 5–7 суток, учитывали и отбирали культуры, вокруг колоний которых образовывались непрозрачные зоны гидролиза жиров. Активными считали культуры, образующие зоны, превышающие диаметр колоний. Для количественного определения липазной активности грибы выращивали в глубинных условиях в колбах Эрленмейера объемом 250 мл с 50 мл питательной среды на круговой качалке (150 об/мин) в течение 3–4 суток при 36–400С. Посевным материалом для иннокуляции питательной среды служила суспензия спор гриба. Липазную активность определяли в фильтрате культуральной жидкости. За единицу липазной активности принимали такое количество фермента, которое освобождает 1 мкМ олеиновой кислоты из 40% эмульсии оливкового масла в 10% растворе поливинилового спирта за 1 ч в условиях опыта.

    При глубинных условиях выращивания липазную активность культур выявляли на различных питательных средах (%):

    1) видоизмененная среда Чапека:

    а) KH2PO4 – 0,1; MgSO4*7H20 – 0,05; FeSO4 *7H20–0,01; CaCO3-0,3; хлопковое масло и пептон – по 0,1;

    б) минеральный состав с добавлением хлопкового масла и кукурузного экстракта по 1,0;

    2) среда из 7% экстракта солодовых ростков с добавлением (NH4)2SO4 – 0,3; CaCO3 – 0,1 и хлопкового масла – 1,0;

    3) среда с гидролизатом БВК -1,0; (NH4)2SO4 – 0,3; CaCO3 и хлопковое масло – по 0,1; рН питательных сред – 6,5–7,0.

    Внутриклеточную липазную активность определяли в гомогенате сырой биомассы. Для этого 0,5 г биомассы, тщательно отмытой дистиллированной воды, растирали в фарфоровой ступке с кварцевым песком, доводили объем до 50 мл дистиллированной воды и выдерживали 2 ч при комнатной температуре, затем отфильтровывали через бумажный фильтр и фильтрат использовали для анализа. Активность рассчитывали на 1 г абсолютно сухой биомассы /46/.

    Другой способ биосинтеза липазы заключается в следующем. Сначала была получена культура дрожжей Candida paralipolytica 739. Работа началась с использования питательной среды следующего состава (%): (NH4)2SO4 – 0,3; MgSO4 – 0,07; NaCl – 0,05; Ca(NO3)2 – 0,04; KH2PO4 – 1,0; K2HPO4 – 0,1; глюкоза – 0,5; дрожжевой автолизат – 0,1 (по сухому веществу). В качестве посевного материала использовали 48-часовую культуру, выращенную на косом агаре. Для опытов культуру дрожжей выращивали при 300С в колбах емкостью 750 мл со 100 мл среды на качалке при 240–250 об/мин в течение 2-х суток. Липазную активность в культуральной жидкости определяли по количеству олеиновой кислоты, образовавшейся в результате действия фермента на оливковое масло. В международной практике эмульсию оливкового масла в поливиниловом спирте в качестве субстрата используют для определения липазной активности и, в частности, для экзолипазы дрожжевой культуры Candida paralipolytica /47/. В данном опыте реакционная смесь содержала 2,5 мл 40%-ной эмульсии оливкового масла в 2%-ном поливиниловом спирте, 2 мл 1/15 М фосфатного буфера с рН 8 и 0,5 мл ферментного раствора. Реакцию проводили при 370С в течение 1 ч и прерывали добавлением 15 мл этанола. Полученную смесь титровали 0,05 н. NaOH в присутствии индикатора тимолового синего. Контрольные образцы обрабатывали так же, но без предварительной инкубации и немедленно оттитровывали. Результаты титрования определяли по разности между контролем и опытом. За единицу активности принимали количество, способное высвобождаться 1 мк/моль олеиновой кислоты из 40%-ной эмульсии оливкового масла при рН 8,0 и температуре 370 в течение 1 ч /48/.

    При биосинтезе ферментов микроорганизмами большое значение имеют условия развития культуры и в первую очередь состав питательной среды. В связи с этим представляло интерес изучить влияние солей среды не биосинтез липазы культурой Candida paralipolytica 739. Путем поочередного исключения солей установили, что все минеральные соли, входящие в состав питательной среды необходимы для биосинтеза фермента. Выявили, что на образование липазы положительно влияют соли аммония и мочевина, нитраты заметно снижают активность липазы. Также проверяли зависимость липазной активности в культуральной жидкости от возраста посевного материала. Полученные данные позволяют сделать следующие выводы:

    1) при биосинтезе липазы дрожжами Candida paralipolytica 739 максимальная липолитическая активность достигается в средах при использовании в качестве источника углерода глюкозы; дисахариды мальтоза, сахароза и лактоза несколько снижают активность фермента, а уксусная кислота полностью прекращает его синтез;

    2) в углеводной среде соли аммония имеют преимущество по сравнению с нитратами как источником азота;

    3) при биосинтезе немаловажную роль играет возраст посевного материала, максимальные показатели соответствуют двухсуточной культуре /49/.

    Для определения липолитической активности использовали метод, основанный на титрометрическом определении свободных жирных кислот, образовавшихся при гидролизе липидов. В качестве субстрата использовали оливковое масло, эмульгированное поливиниловым спиртом (степень полимеризации 1725, вязкость 30 сП). Эмульсию готовили следующим образом: к 100 мл оливкового масла добавляли 150 мл 2%-ного водного раствора поливинилового спирта и эмульгировали в течение 20 мин при комнатной температуре (рН 8). Эмульсия была стабильна 24 ч. Реакционная смесь содержала 5 мл субстрата, 4 мл 0,1 М фосфатного буфера (рН=7,8). Реакционную смесь выдерживали 10 мин при температуре 340, прибавляли 1 мл ферментного раствора. После 60-минутного инкубирования реакцию останавливали добавлением 20 мл этанола и ацетона (1:1). Образовавшуюся олеиновую кислоту оттитровывали 0,05 н. щелочью в присутствии тимолфталеина. За единицу липазной активности принимали такое количество фермента, которое отщепляет 1 мкмоль жирных кислот от эмульсии триолеата за 1 ч при 340.

    Ферментативный препарат липазы получали по следующей схеме: 1) отделение биомассы от ферментативного раствора; 2) осаждение фермента органическим растворителями или высаливание; 3) освобождение фермента от солей и низкомолекулярных примесей с помощью хроматографии на колонке с сефадексом Г-25 или диализом; 4) лиофилизация или осаждение ацетоном.

    Ферментативный раствор центрифугировали 20 мин при 4000 об/мин для отделения биомассы. Согласно литературным данным, для получения сухого, частично очищенного препарата используют фракционное осаждение органическими растворителями (изопропанолом, этанолом, ацетоном). Оптимальный вариант для получения липазного препарата из ферментативного раствора Candida paralipolytica 739 – высаливание фермента сульфатом аммония /50/.

    Фермент из ферментативного раствора осаждали фракционированием сульфатом аммония в интервале насыщения 0,4–0,7. Фермента с самой высокой липолитической активностью осаждался при степени насыщения сульфатом аммония 0,5. При более высокой степени насыщения вместе с ферментом выпадал и белок, не обладающий липолитической активностью. Концентрированный раствор фермента освобождали от солей и низкомолекулярных примесей на колонке с сефадексом Г-25 и диализом (вода) в течение 24 ч. После диализа или гель-фильтрации раствор фермента лиофилизировали или осаждали ацетоном. Препарат хорошо выдерживал лиофилизацию и не терял активности при хранении в лиофилизированном состоянии при температуре 40С в течение 6 месяцев.

    Таким образом, можно сделать вывод, что исследованный препарат в дальнейшем может быть использован для получения высокоочищенной и кристаллической липазы, а также в некоторых отраслях народного хозяйства.


    1.3.3 Применение микробных липаз

    Использование микробных липаз в первую очередь связано с потребностью масложировой промышленности. Они стали широко использоваться для модификации жиров и масел. Следует отметить, что безконтрольный липолиз может вызвать неприятный привкус, связанный с накоплением свободных жирных кислот, для удаления которых требуется дополнительное центрифугирование. С другой стороны, специфичный вкус сыра частично обусловлен присутствием короткоцепочечных жирных кислот, образующихся в результате частичного гидролиза молочного жира под действием липаз, продуцируемых микроорганизмами, и липаз, присутствующих в самом молоке. Пикантный и характерный вкус итальянских сыров обусловлен действием специально добавляемой в молоко липазы, специфичной к короткоцепочечным жирным кислотам. Липазы могут быть рекомендованы для модификации жиров, используемых в производстве хлебобулочных изделий. Использование модифицированных жиров улучшает вкус, цвет, мягкость и структуру хлеба. В кожевенной промышленности микробные липазы используются для обезжиривания кожи. Липазы микроорганизмов в комплексе с другими ферментами применяются для биологической очистки сточных вод /51/.

    Существует еще ряд причин, которые делают изучение липаз интересным и перспективным. Прежде всего это касается их использования в медицине. Так, управление липолитической активностью, вероятно, будет играть важную роль в будущих методах лечения нарушений жирового обмена, и, следовательно, в контроле за сердечно-сосудистыми заболеваниями. Определение активности сывороточной липазы широко используется в клинике для диагностики некоторых заболеваний. Врожденная гиперлипемия может возникнуть из-за дефицита липопротеидлипазы, а нарушения процессов депонирования жиров связывают с холестерол-эстеразой и сфингомиелиназой. В еще большей мере обнадеживает и способствует появлению новых гипотез тот факт, что эфиры холестерина с жирными кислотами являются основными компонентами атеросклеротических бляшек и что миелинизация развивающегося мозга коррелирует с уменьшением содержания эфиров холестерина /52/.

    В последнее время проводятся целенаправленные исследования по использованию микробных липаз в составе моющих средств, шампуней, кремов и профилактических зубных паст. Важность применения липаз в составе моющих средств определяется не только их высокой эффективностью, но и связана с охраной окружающей среды. Известно, что фосфаты, используемые в качестве синтетических моющих средств, приводят к загрязенению сточных вод. Другим немаловажным фактором является то, что использование ферментов в составе синтетических моющих средств позволяет проводить стирку при более низких температурах, следовательно, приводит к экономии энергозатрат /40/.

    За рубежом липазу используют для придания приятного запаха молочным продуктам. Для создания букета запаха в молочных продуктах используют липазы, специфичные к короткоцепочечным жирным кислотам. Для этих целей давно используют ферменты из поджелудочной железы различных животных. Широкое применение липаз в различных областях привело к увеличению числа компаний, производящих микробные липазы /41/.

    Таким образом, спектр применения микробных липаз достаточно широк. Эффективность использования их зависит отряда факторов, прежде всего от специфичности липаз и условий проведения конкретного биотехнологического процесса.

    Таким образом, на основании литературного обзора можно сделать вывод, что представители рода Pseudomonas широко распространены в природе. Они могут развиваться в самых различных условиях в природе, используя самые разные соединения углерода и азота в энергетическом и конструктивном обмене. Псевдомонады способны расщеплять СПАВ. ПАВ способны взаимодействовать с различными компонентами клеточных стенок бактерий, включая муреиновый слой, белки, липиды, липопротеины, липополисахариды.

    Внеклеточные щелочные протеиназы выполняют ряд важных катаболических функций вне клетки. Наиболее очевидной функцией щелочных протеиназ является расщепление белков и других высокомолекулярных субстратов, содержащихся в питательной среде, и превращение их в форму, способную легко проникать внутрь микробной клетки. Наиболее активными культурами в отношении образования щелочных протеиназ являются различные виды из рода Bacillus, главным образом Bac. Subtilis.

    Микроорганизмы обладают особенностью, которая заключается в том, что они способны синтезировать внеклеточные ферменты. Одним из промышленно важных ферментов, продуцируемых микроорганизммами, являются липазы. Изучение микробных липаз представляет большой теоретический и практический интерес, так как они могут использоваться в различных отраслях промышленности (масло-жировой, кондитерской, кожевенно-меховой, в медицине и др.)


    2. Объекты и методы исследования


    Целью данной работы являлось выделение, изучение свойств концентрированного ферментного препарата и его применение в процессе обезжиривания меховой овчины.


    2.1 Объекты исследования

    ПРЕВОЦЕЛЛ W-OF-7 представляет собой продукт оксиэтилирования технических жирных спиртов. По внешнему виду Превоцелл воскообразная масса белого цвета, растворяется при температуре 40–450С, устойчив в жесткой воде, а также в кислых и щелочных растворах. Обладает хорошей смачивающей способностью.

    WETTER HAC – 100% активный, неионогенный смачивающий и отмачивающий агент, усиленный специальными бактерицидами и фунгицидами. На вид светло-янтарная, немного вязкая жидкость, растворимость неограниченная, рН – (вода) 6,8–7,2 (1% раствор). Применяется в отмоке вместе с обычным количеством соли, концентрация 1 г/л. Преимущества: предохраняет шерсть от вытекания и кожу от повреждения различными бактериями; обладает прекрасными моющими качествами, облегчая вымещение избыточных природных жиров, засохшей крови и чужеродных материалов как с волоса, так и с кожевой ткани.

    DE-SOL-A – низкорастворимое моющее средство, на вид представляет собой белую пасту с рН 8–8,5 (1% раствор), растворимость – 10% дисперсионна. Применяется для мойки и обезжиривания меховой и шубной овчины (1,5 г/л DE-SOL-A, 1 г/л кальцинированной соды). Преимущества: гарантирует для шкурки: менее 1% жира в волосе и минимум натуральных жиров в кожевой ткани; позволяет чистое мездрение и более равномерное поглощение в пикеле и дублении; снижает возможность сваливания меха; выпускает шкурки белее, чище и оставляет волос рассыпчатым и открытым; улучшает равномерность окраски меха и кожи, вымещая из кожевой ткани натуральные жиры перед пикелем; стабилен в широком диапазоне рН, а также эффективен перед крашением для выравнивания цвета.

    ГАММА представляет собой смесь высококачественных анионных, неионогенных ПАВ, полезных добавок. Препарат обладает высокой обезжиривающей способностью по отношению к натуральным жирам. Рекомендуется для обезжиривания кож КРС. Эффективен в жесткой воде, а также в присутствии электролитов и дубителей. Легко растворим в воде, в том числе и жесткой.

    АГАР-АГАР представляет собой порошок белого цвета без постороннего запаха, вкуса. Наличие плесени и видимых посторонних включений не допускается. Физические и химические показатели должны соответствовать требованиям, указанным в табл 1.


    Таблица 1. Физические и химические показатели агар-агара

    Наименование показателей

    Норма

    Цвет студня с массовой долей сухого агара 0,85%, %, не менее

    45–60

    Прочность студня с массовой долей сухого агара 0,85% г, не менее

    200–300

    Температура плавления студня с массовой долей сухого агара 0,85%, 0С, не ниже

    80

    Массовая доля влаги, %, не более

    18

    Массовая доля золы (в пересчете на сухое вещество), %, не более

    4,5

    Массовая доля общего азота (в пересчете на сухое вещество), %, не более

    0,2

    Наличие йода и тяжелых металлов

    Не допускается


    2.2 Методы исследования

    2.2.1 Методика приготовления питательных сред для культивирования микроорганизмов

    Мясопептонный агар (МПА)

    При культивировании микроорганизмов большое значение имеет обеспечение их соответствующим питанием. Белковой основой для всех сред является питательный бульон. Основой для приготовления мясопептонного бульона (МПБ) является мясная вода. Ее приготавливают следующим образом: 15 г. сухого бульона растворяли в 1 дм3 дистиллированной воды и кипятили 1–3 мин. Для приготовления плотной питательной среды МПА к 1 дм3 МПБ добавляют 2–2,5% агар-агара от объема среды и расплавляют в автоклаве.

    Синтетическая среда

    К 1 дм3 дистиллированной воды для удовлетворения потребности микроорганизмов в макро- и микроэлементах, без которых клетка расти не может, в синтетическую среду вводили соли следующего состава (г/дм3): NaH2PO4-1,0; NH4NO3-1,0; KCl – 0,5; MgCl2-0,1. В качестве источника углерода в конструктивном и энергетическом обмене использовали шерстный жир в количестве 1 г/дм3. Также добавляли СПАВ – 1 г/дм3 и агар-агар в количестве 2–2,5% от объема жидкой среды и автоклавировали.


    2.2.2 Выделение чистой культуры

    Приготовление разведений. Разведения делают в стерильной водопроводной воде. Готовят определенный объем этого раствора и стерилизуют при 1 атм в автоклаве. В ходе одного опыта пользуются постоянным коэффициентом разведения, т. к. в этом случае уменьшается вероятность ошибки. Чаще всего делают десятичные разведения. Для этого берут пробирку с 10 см3 стерильного раствора и переносят стерильной пипеткой 1 см3 исследуемого материала в данную пробирку. Суспензию этого разведения тщательно перемешивают с помощью новой стерильной пипетки, вбирая в пипетку и выпуская из нее полученную смесь несколько раз. Это обеспечивает перемешивание суспензии и уменьшает адсорбцию клеток на стенках пипетки. Затем этой же пипеткой берут 1 мл полученного разведения и переносят его во 2-ую пробирку. Таким образом, готовят и последующие разведения. Степень разведения определяется предполагаемым количеством микроорганизмов в образце и соответственно число разведений тем больше, чем больше микроорганизмов в исходном субстрате.

    Для приготовления каждого разведения обязательно используют отдельную пипетку. Пренебрежение этим правилом может привести к получению ошибочного результата. Ошибка связана с адсорбцией микроорганизмов на стенках пипетки, в результате чего не все клетки удаляются из пипетки при приготовлении соответствующего разведения. Часть клеток, оставшаяся на стенках пипетки, может затем попасть в одно из последующих разведений, что и явится причиной получения завышенного результата.

    Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11


    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.