МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Дипломная работа: Исследование систем измерения траекторных параметров самолета при посадке на основе эффекта Мессбауэра

    В результате увеличивается вероятность возбуждения фотонапри отдаче и, следовательно, уменьшается вероятность эффекта Мессбауэра f.

    Рисунок 1.10 Сравнение резонансных кривых

    1 – резонансная кривая для эффекта Мессбауэра;

    2 – резонансная кривая с доплеровским уширением.

    Следует подчеркнуть, что наличие несмещенной линии излучения (поглощения) не является исключительной привилегией регулярных кристаллов. Принципиально эффект Мессбауэра должен иметь место в любой макроскопической системе взаимодействующих частиц. Действительно, приведенные выше соображения относительно нарушения корреляции между переданными импульсом и энергией целиком переносятся на любую макроскопическую систему. В частности, это относится к аморфным телам и жидкостям. Однако вероятность эффекта очень сильно зависит от особенностей системы. Так, существенное уменьшение вероятности эффекта f будет возникать всякий раз, когда в системе сохраняются индивидуальные степени свободы, например незаторможенное вращение в твердых телах, перемещение молекул в жидкости и т.п.

    Эффект Мессбауэра будет иметь место и для малых ансамблей частиц, если центр тяжести такого ансамбля принудительно зафиксирован. Более того эффект может существовать и для отдельных частиц, если они находятся в потенциальной яме. Для указанных систем характерны локализированные возбужденные состояния. Аморфные тела, очевидно, так же примыкают к подобным системам. Характер зависимости вероятности эффекта Мессбауэра от температуры для такого рода систем качественно мало отличается от случая регулярного кристалла.

    Таким образом, появление несмещенной линии излучения (поглощения)  -квантов в случае низколежащих ядерных уровней в принципе следует ожидать для довольно широкого класса систем. Если относительная интенсивность линии Мессбауэра не слишком мала, то при благоприятных условиях резонансное поглощение можно обнаружить экспериментально во всех случаях.

    Узость несмещенной линии при большой величине энергии -кванта позволяет легко нарушить условие резонанса. Если в формуле для v заменить R на Г, то из нее нетрудно заключить, что для нарушения условий резонанса необходимы ничтожные относительные скорости источника и поглотителя. Так в случае Sn119, принимая во внимание найденное раньше отношение Г/R~10-5, получаем для v значение порядка мм/сек . Заметим, что чем выше разрешающая способность, тем меньшиезначения скорости нарушают резонанс.

    Эффект Мессбауэра на различных изотопах.

    Эффект Мессбауэра был обнаружен на различных изотопах. Две основополагающие работы Мессбауэра подробно описывают открытие и исследование эффекта резонансного поглощения без отдачи на ядрах изотопа Ir191 с энергией возбужденного состояния 129 кэв ( сек). Так же был обнаружен эффект на изотопе железа Fe57 (Е=14.4 кэв и сек) Малая энергия отдачи и одновременно большая разрешающая способность (Г/Е)сделали этот изотоп наиболее часто использующимся в исследованиях, связанных с эффектом Мессбауэра. Изотоп Fe57 обладает высокой разрешающей способностью и малой энергией отдачи. Кроме того, малая энергия -лучей и высокая дебаевская температура железа позволяет получит для Fe57 значение вероятности эффекта 0,8 даже при комнатной температуре. Поэтому нет необходимости в охлаждении. Частотные смещения могут быть вызваны разностью температур источника и поглотителя. За время испускания (поглощения), равное для Fe57KFc, среднее значение скорости связанного ядра хорошо определяется и будет происходить лишь пренебрежимо малое уширение. Ненулевое значение скорости приводит к относительному изменению частоты, что связано с релятивистским эффектом Доплера, а это значит, что частота испускания(поглощения) должны меняться с температурой. При 300°К можно получить изменение частоты 2-10-15 на 1°С. При расположении источника и поглотителя на расстоянии L<10 см такого температурного изменения не произойдет. Широкая линия Fe57 (относительно Zn67) дает преимущество и в том, что при малых по сравнению с шириной линии вибрациях они за счет усреднения исключаются из результатов измерений за длительное время. Небольшие постоянные сдвиги могут быть измерены в присутствии больших вибраций. При малых и практически равных массах приемной и передающей частей относительное колебание пренебрежимо мало Общее их движение при усреднении стремиться к нулю.

    Широкое применение, особенно в последнее время, получил так же изотоп

    Для особо прецезионных измерений смещений линии специальный интереспредставляет изотоп Zn61(E=92 кэв , =9.4-10-6 сек ) с рекордным значением Г/Е 5*10-16. Однако измерение эффекта Мессбауэра на этом изотопе проводить исключительно трудно из-за малой величины вероятности эффекта и чрезвычайной узости линии. (Последнее приводит к тому, что механические колебания со скоростью всего 10-5см/сек нарушают условия резонанса). Резонансное поглощение без отдачи наблюдали используя в качестве источника и поглотителя окись цинка ZnO, которая обладает существенно более большим значением эффекта по сравнению с металлическим цинком, но в ZnO наблюдаемая величина линии Мессбауэра не сильно отличается от естественной.

    Существование эффекта резонансного поглощения без отдачи был обнаружен на редкоземельных элементах, эффект наблюдался на изотопе Dy161 ( Е=26 кэв, сек ), причем в качестве поглотителя использовались окись Dyi Оз. Однако не удалось разрешить сверхтонкую структуру, и ширина резонансной линии оказалась в 100 раз больше естественной.

    Помимо этого, имеется еще ряд сообщений об обнаружении эффекта Мессбауэра на других изотопах: Ег166( Е=80.6 кэв, ), Iг193( Е=73 кэв, ), W183(E=99.1 кэв, т!/2 -5.7-10-10), W182 (Е=100 кэв, ), W183 (Е=46.5 кэв,), Те125(Е=35.5 кэв, ), Тm169 (Е=8.42 кэв, ), Yb170 (Е-84 кэв, ), Ni (Е=71 кэе, сек), Sm149 (Е=22 кэв. сек).

    Вработах Мессбауэра, как и в большинстве последующих работ, эффект изучался с помощью опытов по пропусканию -квантов через резонансно поглощающие мишени. При этом измерялось уменьшение общей интенсивности излучения по сравнению со случаем нерезонансного поглощения (большие скорости источника относительно поглотителя или высокие температуры). Однако принципиально гораздо большей экспериментальной чувствительностью должны обладать опыты по резонансному рассеянию -лучей. В оптимальных условиях в таких опытах может быть существенно уменьшен фон нерезонансного рассеяния, в результате чего становится доступным измерение очень малых величин интенсивностей. Независимо большой интерес представляет анализ угловогораспределения резонансного рассеянного излучения, позволяющий получать важную информацию о сверхтонкой структуре. Резонансное рассеяние - квантов без отдачи впервые наблюдали для Sn119,позднее исследовалась форма линии резонансного рассеяния для Fe57 .

    Во многих случаях распад, соответствующий низколежащим возбужденным уровням, сопровождается внутренней конверсией, причем коэффициент конверсии а имеет заметную величину. Это открывает интересные экспериментальные возможности регистрации эффекта Мессбауэра по электронам конверсии и характеристическому рентгеновскому излучению, сопровождающему внутреннюю конверсию.

    Также анализируется возможность наблюдения эффекта Мессбауэра для сверх узких линий изотопов серебра Ag107 и Ag109 . Этим изотопам соответствуют порядка 1 мин .

    Большой интерес представляет так же рассмотрение вероятности резонансного излучения (поглощения) - квантов в случае, когда излучателем является чужое по отношению к основной решетке ядро. Аномальная температурная зависимость вероятности эффекта Мессбауэра в случае, когда излучателем является тяжелое ядро, а остальные ядра в элементарной ячейке легкие, была обнаружена SnOi(излучатель Sn119) и Dy2O3 (излучатель Dy161). В них эффект существует при высоких температурах и снижение его с ростом температуры происходит медленно. Для Dy2O3 заметный эффект наблюдался при 1000° К. Аналогичным был результат, когда легкое ядро Fe57 внедрялось в тяжелую матрицу In. Величина эффекта при большом различии масс атомов излучателя и матрицы, температурная зависимость эффекта, возможность наблюдения эффекта для легкого излучателя или при заметной энергии отдачи, а также для кристалла с низкой температурой Дебая - все эти проблемы играют существенную роль в самых разнообразных задачах, связанных с применением эффекта Мессбауэра.

    Теория эффекта Мессбауэра.

    Если при излучении (или рассеянии) ядро / системы получает импульс p=hk, то нормированная на единицу вероятности перехода системы из состояния i в состояние f определяется квадратом матричного элемента:

     (1.14)

    L- ядро системы;

    Р-импульс;

    i,f-состояния.

    При этом эффекту Мессбауэра соответствует переход без изменения состояния системы f=i, а так же переходы с изменением состояния системы, но без изменения ее энергии. Если спектр системы состоит из квазинепрерывных полос, ширина которых много больше Г, то, как можно показать, вероятность эффекта практически определяется вероятностью перехода без изменения состояния системы. Для регулярных кристаллов мы будем предполагать, что реализуется именно эта ситуация. Заметим, что при наличии дискретных уровней картина меняется и при их вырождении необходимо учитывать переходы типа испускания и поглощения квантов одинаковой энергии, но принадлежащих различным расстояниям. Рассмотрим регулярную решетку произвольной симметрии с произвольным числом атомов в элементарной ячейке;

     (1.15)

    где

     и  - соответственно равновесное положение и смещение j-ro атома в элементарной ячейке п.

    Для можно написать следующее общее выражение:

     (1.16)

    Причем комплексные амплитуды vj - ортонормированны условиям (верхние индексы-декартовы координаты)

    где

    f,- волновой вектор и частота фонона,

     - номер ветви,

    а и а+ - соответственно операторы поглощения и рождения фонона,

    N- число элементарных ячеек в кристалле,

    Мjмасса атома j.

    В силу трансляционной симметрии матричный элемент (1.14) будет зависеть только от j. Не теряя общности, положим n=0. Учитывая (1.16) представим экспоненту в (1.14) в виде произведения экспонент, соответствующих отдельным нормальным колебаниям. Разложим эти экспоненты в ряд, ограничиваясь первыми тремя членами (остальные дают вклад стремящейся к нулю, при N стремящейся к бесконечности). Принимая во внимание независимость отдельных осцилляторов и характеризуя состояние кристалла совокупностью чисел заполнения фононов, для процесса с участием s фононов, находим (после усреднения по начальному равновесному распределению):


     (1.17)

    Причем

    Или переходя от суммирования к интегрированию по фазовому объему:

     (1.28)

    Здесь rj- энергия отдачи для изолированного ядра j

    где

    q- единичный вектор в направление вылета у-кванта,

    n- равновесное значение числа фононов,

    U0 -объем элементарной ячейки.

    Верхний знак в квадратных скобках в (1.17) отвечает испусканию фонона, нижний-поглощению.

    Вероятность излучения (поглощения)  - кванта ядром типа jбез изменения состояния кристалла в соответствии с (1.17) определяется выражением:

     (1.19)

    Выражения (1.18) и (1.19) описывают вероятность эффекта Мессбауэра для общего случая регулярной кристаллической решетки, когда излучателем является один из атомов в элементарной ячейке (атому) [1.3].

    Открытие явления резонансного испускания и поглощения -квантов без отдачи части энергии ядру положило дорогу созданию высокочастотных измерительных устройств. При столь остром резонансе любое воздействие, приводящее к изменению частоты (энергии) гамма-квантов, неизбежно нарушает ядерный резонанс, обеспечивая чрезвычайную чувствительность и точность измерения. Эффект Мессбауэра может с успехом использовать для измерения угловых параметров, малых расстояний и скоростей движения : от сотых долей миллиметров в секунду до десятков сантиметров в секунду.

    Определение скоростей и расстояний - резонансным методом.

    Сложность непосредственного измерения малых скоростей приводит к поискамновых методов измерений. Разрешающая способность доплеровских измерителей скорости зависит от абсолютного значения измеряемой скорости:

    гдеFД - доплеровский сдвиг частот,

    fn- частота передатчика.

    При этом измерение малых скоростей ограничено конечным значением частоты модуляции. Использование эффекта Мессбауэра позволяет определить значения скоростей, недоступных для измерения радиотехническими методами.

    Сущность эффекта Мессбауэра заключается в том, что источник и приемник резонансных квантов имеют одинаковые энергетические уровни и при отсутствии относительного движения в приемнике наблюдается резонансное поглощение у квантов. При относительном движении со скоростью Vrэнергия -квантов изменяется в связи с действием эффекта Доплера, что приводит к нарушению резонанса. Относительную скорость можно определить по изменению регистрируемой плотности потока резонансных у -квантов. Измерительные схемы, использующие данный эффект, обладают необычайно высокой добротностью за счет чрезвычайно узкой относительной ширины резонансных линий поглощения. На этом принципе основано использование -резонансного метода для измерения малых скоростей движения.

    В общем случае для определения скоростей могут быть использованы три метода, позволяющие регистрировать эффект Мессбауэра:

    -  метод пропускания резонансных - квантов;

    -  метод регистрации электронов внутренней конверсии и рентгеновскогоизлучения;

    -  метод регистрации рассеянного резонансного излучения.

    -  Сущность первого метода заключается в следующем (рисунок 1.11).

    Рисунок 1.11 Схема измерения скорости на основе эффекта Мессбауэра методом пропускания резонансных гамма-квантов при нулевой скорости относительного перемещения источника и детектора (а), и скорости отличной от нуля (б)

    1-  Источник,

    2-  поглотитель,

    3-  основной детектор,

    4-  дополнительный детектор,

    5-  регистратор.

    Если перед источником резонансных -квантов расположить тонкий поглотитель с энергетическими уровнями возбуждения, аналогичными источнику, то в поглотителе будет наблюдаться резонансное поглощение -квантов. Если скорость относительного перемещения источника и детектора Vr=0, то основной детектор 3(см. рисунок 1.11а) зарегистрирует минимальную скорость счета, а дополнительный детектор 4 будет фиксировать максимальное количество вторичных фотонов, образующихся при переходе ядер поглотителя в основное состояние после резонансного поглощения. При относительном движении источника и приемника условия резонанса нарушаются в результате доплеровского сдвига частот, равногоотносительному смещению по энергии При этом скорость счета навыходе детектора 3 возрастает, а детектор 4 регистрирует минимальное количество - квантов (рисунок 1.11б). Зная зависимость скорости счета - квантов прошедших через поглотитель, от относительной скорости системы источник-поглотитель, можно определить скорость перемещения, которую можно записать:

    (1.20)

    гдеPnan - соответственно плотность и толщина поглотителя;

    ар - относительная доля резонансных квантов в спектре источника;

    - сечение резонансного поглощения;

    - массовый коэффициент поглощения;

    p,р - вероятность испускания и поглощения квантов без отдачи;

    ns ,nn - число атомов резонансного изотопа на см2в источнике и поглотителе.

    Страницы: 1, 2, 3, 4, 5


    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.